
www.objectteams.org

Plugin reuse and adaptation with Object Teams:

Don't settle for a compromise!

Stephan Herrmann
Technische Unversität Berlin

 www.objectteams.org

EclipeCon 2009 – Long Talk:

© 2009 by Stephan Herrmann; made available under the EPL v1.0 | Mar 25, 2009

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 2

www.objectteams.org

innovation

reuse

speed

provides:
anticipated

requires:
unanticipated

compromise

quality

The GameThe Game

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 3

www.objectteams.org

innovation

reuse

speed

provides:
anticipated

requires:
unanticipated

compromise

quality

The Game

maintenance

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 4

www.objectteams.org

Solution

With Object Teams it is possible
to eat the cake
 apply unanticipated adaptations

and still have it
 sustain a well modularized, maintainable design

OT/Equinox brings this power
to the development of Eclipse plugins

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 5

www.objectteams.org

Unanticipated Adaptation

Object oriented adaptation: Inheritance
program by difference
choose at instantiation time

This is good, but:
who controls instantiation?
behavioral changes after instantiation?
multiple (independent) adaptations?

We need something similar to inheritance
apply to objects not classes:
adapt any time, any number

role objects

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 6

www.objectteams.org

OT/J based Architecture

 MyTeam

teamField: someType
teamMethod(T2): Type2

0 1 BasePkg
team
 collaboration module

role
 members of a team

playedBy
 connect role to base

callout
 forward to base

callin
 intercept base method

decapsulation
 break base encapsulation

(de)activation
 dis/enable all callins

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()

method2()

 «playedBy»

C1 «playedBy»

roleMeth1 -> method1
callout

roleMeth2 <- method2 callin

 SubTeam

otherField: otherType
otherMethod(T3): Type3

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 7

www.objectteams.org

OT/J based Architecture

 MyTeam

teamField: someType
teamMethod(T2): Type2

0 1 BasePkg
team
 collaboration module

role
 members of a team

playedBy
 connect role to base

callout
 forward to base

callin
 intercept base method

decapsulation
 break base encapsulation

(de)activation
 dis/enable all callins

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()

method2()

 «playedBy»

C1 «playedBy»

roleMeth1 -> method1
callout

roleMeth2 <- method2 callin

 SubTeam

otherField: otherType
otherMethod(T3): Type3

Inheritance of complex structures
virtual methods and classes
propagating specialization

public team class T2 extends T1 {
 @Override protected class R2 {
 @Override void m3() {
 doMyStuff();
 }
 }
}

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 8

www.objectteams.org

Object Teams

ObjectTeams/Java (OT/J) since 2001

Java += roles, teams, aspect bindings

Object Teams Development Tooling since 2003

Java Compiler += OT/J constructs
JDT for OT/J (code assist, ui, launch ...)

OT/Equinox since 2006

Equinox += aspect bindings

Application
Case studies (project TOPPrax)

Class room

OTDT
WEOODF
(we eat our own dog food)

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 9

www.objectteams.org

OT/Equinox

Plug-in A

CA1 CA2

Plug-in B

export

internal

CB1

CB2

CB4
CB3

«require»

Plug-in C

CC1Team1
import base CB1;
import base CB3;

R2

...
Require-Bundle: B
...

MANIFEST.MF

R1
rm←bm

1

IB2

CA2
2

extension
point

«aspectBinding»

«playedBy»

«playedBy»

3

<extension
 point="org.objectteams.otequinox.aspectBindings">

 <aspectBinding>
 <basePlugin id=”B”/>
 <team class=”Team1”

 activation=”ALL_THREADS”/>
 </aspectBinding>

plugin.xml

Plug-in relationships

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 10

www.objectteams.org

Demo 1

OT/Equinox Hello World
Create a plugin that

makes “Foo” an illegal Java type name
can no longer do demos
“AntiDemo”

Prerequisite
Have identified a join point in
org.eclipse.jdt.core.JavaConventions.validateXYZ()

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 11

www.objectteams.org

Demo 1 – Summary

Development of OT Plug-ins
Wizards, validation, content assist, ...
Minimal: 1 aspect binding, 1 team, 1 role, 1 callin

Running Eclipse with OT/Equinox
Enable OT/Equinox

Inside Eclipse
About Plug-ins

inspect which plug-ins are adapted

OT/Equinox Monitor
inspect active team instances
dynamically (de)activate

one more lesson we learned ...

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 12

www.objectteams.org

Demo 1 – Summary

Development of OT Plug-ins
Wizards, validation, content assist, ...
Minimal: 1 aspect binding, 1 team, 1 role, 1 callin

Running Eclipse with OT/Equinox
Enable OT/Equinox

Inside Eclipse
About Plug-ins

inspect which plug-ins are adapted

OT/Equinox Monitor
inspect active team instances
dynamically (de)activate

one more lesson we learned ...

Adapting the core

– not the symptoms –

improves consistency

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 13

www.objectteams.org

OTDT Example 1

Check this consistency constraint
”A plug-in that defines aspect bindings with team
activation must have an activation policy (lazy).“

Could write a complete own validator
parse plugin.xml and MANIFEST.MF
report errors
offer quickfix
get triggered on file changes

Easier: reuse PDE – piggy-back implementation
find join points
(just) implement the above rule

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 14

www.objectteams.org

Bundle Validation – Join points

Found two interesting methods in
org.eclipse.pde.internal.core.builders

ExtensionsErrorReporter
.validateExtension(Element)

invoked for each extension in plugin.xml
can be used as trigger for detected aspect bindings

BundleErrorReporter
.validateBundleActivatorPolicy()

specifically checks the activation policy in MANIFEST.MF
can be used to add our validation

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 15

www.objectteams.org

Bundle Validation – Join points

Found two interesting methods in
org.eclipse.pde.internal.core.builders

ExtensionsErrorReporter
.validateExtension(Element)

invoked for each extension in plugin.xml
can be used as trigger for detected aspect bindings

BundleErrorReporter
.validateBundleActivatorPolicy()

specifically checks the activation policy in MANIFEST.MF
can be used to add our validation

But: those two objects don't know each other!
what is the commen context of both join points?

protected class ExtensionAnalyzer playedBy ExtensionsErrorReporter
{

void checkAspectBinding(Element element) <- after void validateExtension(Element element);
…

}
protected class BundleErrorReporter playedBy BundleErrorReporter
{

void validateBundleActivatorPolicy() <- after void validateBundleActivatorPolicy();
…

}

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 16

www.objectteams.org

BundleValidation
bundleContext: ThreadLocal<BundleCheckingContext>

Bundle Validation – Context

:Extensions-
ErrorReporter

:Bundle-
ErrorReporter

validate-
Extension

:Bundle-
ErrorReporter

:Extension-
Analyzer

checkAspect-
Binding

validateBundle-
ActivatorPolicy

validateBundle-
ActivatorPolicy

validateFiles

:Manifest-
Consistency-

Checker

:BundleCheckingContext
isAspectBundle
hasTeamActivation

spanContext
set(this)

set(null)

get()

get()

report

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 17

www.objectteams.org

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 18

www.objectteams.org

Team – Context – View

A team defines a view
map only relevant elements

classes using playedBy
events using callin
provided actions using callout

team & roles is a self-contained world

A team and its roles define context
store context specific state
context can be defined ...

by a team instance
by a role instance / a graph of ...
per thread
per control flow
...

feature specific

roles may
• start disconnected
• discover each other later
• superimpose structure

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 19

www.objectteams.org

Large-Scale Control-Flow Context

A complex features applies only conditionally
identify the relevant situation with a control-flow
define two teams

feature team is inactive by default
guard team

observes initial trigger
instantiates and activates feature team

use this pattern:
trigger ← after someEvent;
callin void trigger() {
 within (new FeatureTeam()) {
 base.trigger();
 }
}

thread safe
exception safe

temporary per-thread activation

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 20

www.objectteams.org

org.eclispe.pde.core
BundleValidation

bundleContext: ThreadLocal<BundleCheckingContext>

Multi Plugin Coordination

:Extensions-
ErrorReporter

:Bundle-
ErrorReporter

:Bundle-
ErrorReporter

:Extension-
Analyzer

:Manifest-
Consistency-

Checker

:BundleCheckingContext
isAspectBundle
hasTeamActivation

org.eclispe.pde.ui

:Resolution-
Generator

:Resolution-
Generator

:SetActivationPolicy-
Resolution

quickfix

header
re-writing

http://www.objectteams.org/
http://www.objectteams.org/

25.03.2009 Stephan Herrmann @ EclipseCon 2009 21

www.objectteams.org

From-Scratch vs. Piggy-Back

Don't bother with ...
locating files (plugin.xml and MANIFEST.MF)

parsing XML and manifest syntax

mechanics of re-writing the manifest

receiving triggers on file changes

All this is already implemented => re-use it!!

Only implement the net value
less code to write

less code to read

it's all in one place

Find join points to hook into
this task is new

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 22

www.objectteams.org

Observer-Mediator-Actuator

C1 C2 C3 C4

 adaptation
base application

 Mediator

ObserverRole

MediatorRole1 MediatorRole2

mediatorStorageField : DataStructure

ActuatorRole

write read

write

additionalReference

read

intercept
(non-modifying)

decorate intercept
(modifying)

decorate

Abstracting to a general pattern

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 23

www.objectteams.org

Example Call Hierarchy

From 3.4 New&Noteworthy
call hierarchy view works with fields ...

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 24

www.objectteams.org

Example Call Hierarchy

From 3.4 New&Noteworthy
call hierarchy view works with fields ...
first released in the OTDT
later refactored and contributed to Eclipse

More control flows: callin & callout
prerequisite: can already search for callin & callout bindings

ui part: adaptation using ...
1 team adapting 1 base plugin (org.eclipse.jdt.ui)
6 roles adapting 6 base classes
4 callin bindings, 12 callout bindings

 365 LOC

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 25

www.objectteams.org

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 26

www.objectteams.org

Example Call Hierarchy

From 3.4 New&Noteworthy
call hierarchy view works with fields ...
first released in the OTDT
later refactored and contributed to Eclipse

More control flows: callin & callout
prerequisite: can already search for callin & callout bindings

ui part: adaptation using ...
1 team adapting 1 base plugin (org.eclipse.jdt.ui)
6 roles adapting 6 base classes
4 callin bindings, 12 callout bindings

Future: declaratively induced control flows
plugin activator: → MyActivator.start()
aspect binding: → new MyTeam()

 365 LOC

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 27

www.objectteams.org

Example Call Hierarchy

From 3.4 New&Noteworthy
call hierarchy now supports field access
first released in the OTDT
later refactored and contributed to Eclipse

More control flows: callin & callout
prerequisite: search already finds callin & callout

ui part: adaptation using ...
1 team adapting 1 base plugin (org.eclipse.jdt.ui)
6 roles adapting 6 base classes
4 callin bindings, 12 callout bindings

Future: declaratively induced control flows
plugin activator: → MyActivator.start()
aspect binding: → new MyTeam()

 365 LOC

reflecting inheritance structure

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 28

www.objectteams.org

Example: Launching with OT/J

First approach:
new launch configuration type

replace Main
augment classpath
change program arguments

Duplicate for each of
JUnit Test launches
Eclipse Application launches
OSGi Framework launches
JUnit Plugin Test launches
...

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 29

www.objectteams.org

Example: Launching wih OT/J

Second approach:
add OT-capability to existing launches

new checkboxes next to JRE selection
defaults from the project context

add team activation tab
adapt the command line behind the scenes

Benefits
less code
more consistency
composable launches
Stats:

adapting 7 plugins
8 teams, 16 roles, 660 LOC

Adapting the core

– not the symptoms –

improves consistency

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 30

www.objectteams.org

Example: Launching wih OT/J

Second approach:
add OT-capability to existing launches

new checkboxes next to JRE selection
defaults from the project context

add team activation tab
adapt the command line behind the scenes

Benefits
less code
more consistency
composable launches
Stats:

adapting 7 plugins
8 teams, 16 roles, 660 LOC

Adapting the core

– not the symptoms –

improves consistency

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 31

www.objectteams.org

Evolution / Maintenance

Meaningful moduls
comprehensable: only one feature
comprehensive: all of one feature

Join points may change – seldomly
mostly “syntactical” changes: ~ refactoring
very few “semantical” changes

join point called differently
need to refine detection of relevant situation
OT provides sufficient means

embrace change with agility

OTDT built on OT/Equinox since 2006
migrating the OT-plugins: minimal effort

http://www.objectteams.org/
http://www.objectteams.org/

10.11.2008 Stephan Herrmann @ Eclipse DemoCamp 2008 32

www.objectteams.org

Conclusion

Find something similar to what you need?
use it! adapt it to exactly your requirements!
near miss is no excuse!
make the adaptation a meaningful module!
piggy-back adaptation where suitable!
feature = module = context = team!
quickly innovate!

Coming next
combining OT with generative techniques

modeling (e.g., UML 2 tools)
IMP?

No Compromise!

http://www.objectteams.org/
http://www.objectteams.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

