
www.objectteams.org

Object Teams:
Programming with Contextual Roles

Dr. Stephan Herrmann
Independent

 www.objectteams.org

ECOOP 2009 Summer School

© 2009 by Stephan Herrmann; made available under the EPL v1.0 | July 9, 2009

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 2

www.objectteams.org

A Conservative Revolution

Object Teams ...
shows respect for O-O principles

all new concepts must smoothly fit into O-O

takes O-O to the extreme
fully elaborate the powers of

objects, inheritance, composition ...

adds one new dimension
objectivity

an object is an object is an object

subjectivity
selective views with specific purposes

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 3

www.objectteams.org

Adding Roles to O-O

Roles are a seamless extension of O-O
classes & objects & roles ?

these are boring!

what's happening between these things?
association

composition / containment (stricter semantics)

inheritance
delegation (more flexible)
nested inheritance (larger scale)

interactions
explicit message send
contextual dispatch

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 4

www.objectteams.org

Relationships

Object Teams introduces two relationships
object containment

instances nested within instances
supports interaction among siblings

playedBy relationship
inheritance-like delegation
supports interaction among parts of an object

Application of inheritance to the above
inheritance of composed structures

virtual classes & family polymorphism

Application of playedBy to inheritance structures
mapping between different structures

smart lifting & translation polymorphism

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 5

www.objectteams.org

Coherence

These concepts are connected by Roles

R R

R

«playedBy»R

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 6

www.objectteams.org

R R

R

Coherence

Concepts are connected by Roles

«playedBy»

The two faces of a Role
member of a context

interact with each other

view of an underlying base
interact with base / two parts of “self“

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 7

www.objectteams.org

Powerful Pivot

Roles
connect intuition to technology
emphasize objects over classes
introduce subjectivity into programming
are broadly explored in research

The role metaphor
transcends its origin

Roles entail
the concept of Contexts

Designing with roles
adds one more dimension of separation of concerns

ICSE 2009:
„Most influential paper“

from ICSE 1999:

„N Degrees of Separation:
Multi-Dimensional Separation of Concerns“

ICSE 2009:
„Most influential paper“

from ICSE 1999:

„N Degrees of Separation:
Multi-Dimensional Separation of Concerns“

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 8

www.objectteams.org

Definitions of Roles

Sowa [1984]
natural types

“relate to the essence of the entities“

role types
“depend on an accidental relationship to some other entity“

Guarino [1992]
natural type

rigid, lacks foundation
being a Person doesn't change over time,
does not depend on relationships

role
founded, lacks semantic rigidity

being a Student depends on an enrollment relationship
can change over time without loss of identity

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 9

www.objectteams.org

Taxonomy of “is”

is = instance-of
Eric Jul is_a Man
set membership: instance x type

is = subtype
A Man is_a Person
set inclusion: type x type

is = role-of
Eric Jul is_the President
role attachment: instance x instance

is = generalized playedBy
A President is_a Person
promise of role attachment: type x type

(of AITO)

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 10

www.objectteams.org

Properties of Roles (1/5)

15 Criteria by Friedrich Steimann
and their mapping to Object Teams

First approximization of ObjectTeams/Java
Java + Delegation

role containment : inner classes (instance containment)
playedBy : delegation (overriding, late binding of self)

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 11

www.objectteams.org

Properties of Roles (1/5)

15 Criteria by Friedrich Steimann
and their mapping to Object Teams

Roles depend on relationships
roles depend on context (relationship, collaboration, ...)

A role comes with its own properties and behavior
✔ roles are types

The state of an object can be role-specific
✔ roles have state, contribute to state of compound object

Features of an object can be role-specific
✔ roles can override base features

An object may acquire and abandon roles dynamically
✔ role playing is a dynamic relationship between objects

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 12

www.objectteams.org

Reconsider O-O Basics:
Association vs. Containment

Options & Choices

R R

R

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 13

www.objectteams.org

Restricting Access

Encoding architectural constraints
access restricted to authorized clients
Java: private, _, protected, public

coarse grained
class based restrictions

Making the type system instance-aware
dependent types: annotate types with instances

Role<@context>: type parameter is an instance

Role<@c1> : Role<@c2> (unless c1==c2)

protected roles cannot be exposed
CoffeeMachine<@Department.this> OK

CoffeeMachine<@yourDepartment> illegal

} not specific enough
Fundamentally install
instance based access control
 Every role type is a dependent type

Hide complexity for the default case
 Within its team the type anchor can be omitted

Fundamentally install
instance based access control
 Every role type is a dependent type

Hide complexity for the default case
 Within its team the type anchor can be omitted

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 14

www.objectteams.org

Stricter Alias Control

Ownership could leak through polymorphism
every (dependent) type <: Object?

new top-level types: Confined, IConfined
protected sub-classes of Confined cannot leak

restricted inheritance: reuse, yet preserve “anonymity”

Ownership may be too strict
compromises

accessible by empty interface IConfined:
opaque, featureless roles

grant readonly access
expose readonly interface, keep class inaccessible

Not yet:
formalization, proofs

implementation for restricted inheritance, readonly

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 15

www.objectteams.org

Richer Semantics

Just one kind of associations is too weak
cannot create large structures
cannot reason about structure

Role containment
adds strict composition / ownership
adds intermediate variants
connects ownership to the role/context metaphor

Make this the foundation for other concepts

} Objects!

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 16

www.objectteams.org

Language Design Principle (1)

Restrictions first
basic structures must dominate

e.g., roles are allways immutably attached to a base

Flexibility first
concepts have to support many designs

e.g., dynamically attach/detach roles to a base

Exceptions second
exceptions to restrictions

e.g., some roles may be re-attached

exceptions to flexibility
e.g., optimize unused flexibility

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 17

www.objectteams.org

Language Design Principle (2)

Respect your host
ObjectTeams/Java behaves to the rules of Java

some rules hurt
yet, breaking customs hurts more

Secondary concepts to consider:
modifiers: static, private, ...
constructors
overloading
threads
exceptions
generics

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 18

www.objectteams.org

Reconsider O-O Basics:
Generalization

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 19

www.objectteams.org

Generalizing Inheritance

Generalization = „is_a“
Classification with super sets / sub sets
Supports abstraction

use super set to subsume all sub sets

elements of sub set share properties of super

Supports specialization
use sub set to be specific

sub set defines more properties (exceptions?)

Inheritance realizes generalization
Classification, abstraction, specialization ...
Inheritance is rigid

classification determined at birth
once and for ever

Non-rigid generalization?

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 20

www.objectteams.org

Summary

Generalization = „is_a“
generalizes over ...

Inheritance
rigid

single type
determined at birth

focus on classes

Role Playing
anti-rigid

multiple specialization
dynamic

focus on objects

Generalization

Inheritance

RolePlaying

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 21

www.objectteams.org

Comparing
Inheritance vs. Role Playing

Design Choices

«playedBy»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 22

www.objectteams.org

Generalization ≠ Inheritance

A naive (textbook?) example
A man/woman is a person, OK

An employee is a person, OK?
Born as an employee?

Dying when loosing the job?

Several jobs, yet only one salary?

What gender do employees have?

Whats wrong with inheritance?
Missing “become”, “quit”

Can't duplicate fields

Only one most-specific type/object

Employee & Person = 1 instance

Missing support for
changes over time

flexible combinations & multiplicities

Person
name

WomanMan

Employee
salary

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 23

www.objectteams.org

Properties of Role-Playing

Advantages:
Dynamism:
roles can come and go
(same base object)

Multiplicities:
one base can play several roles
(different/same role types)

Similarity to inheritance
playedBy declares delegation

[cf. “Treaty of Orlando“ 1988]

playedBy Relationship

Person
name

Employee
salary

«playedBy»

Role Base

joe: Person
name=”joe”

:Student
matr=0815

«base»

:Employee
salary=100

«base»

:Employee
salary=2000

«b
as

e»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 24

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch sub → super

Overriding
dispatch super → sub

Substitutability
pass an instance of sub class
where the super class is expected

Role Playing

Detailed Comparison

?Goal:
less implicit coupling

 independent evolution

Goal:
less implicit coupling

 independent evolution

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 25

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch sub → super

Role Playing

SuperClass
method()

SubClassmethod()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 26

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch sub

Role Playing
Callout binding

dispatch role → base

SuperClass
method()

SubClassmethod()
:Person

name

«base»
getName()

:Employee
salary

«instance-of» «instance-of»

Person
getName()

«playedBy»Employee
getName → getName

getName()

 String getName() -> String getName();

No other access to «base»
 encapsulate semantics
 separate two worlds
 specific privilege

No other access to «base»
 encapsulate semantics
 separate two worlds
 specific privilege

 different names
 parameter mappings (implicit/explicit)
 callout to field
 decapsulation

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 27

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch sub → super

Overriding
dispatch super → sub

Role Playing
Callout binding

dispatch role → base

SubClass
method()

method()
SuperClass

method()

:SubClass

«instance-of»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 28

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch su

Overriding
dispatch su

Role Playing
Callout binding

dispatch role → base

Callin binding
dispatch role ← base

SubClass
method()

method() SuperClass
method()

:SubClass

«instance-of»

:Person
phoneNo

«base»:Employee
officePhoneNo

«instance-of» «instance-of»

Person
getPhoneNo()

«playedBy»Employee
getPhoneNo ← getPhoneNo

getPhoneNo()getPhoneNo()

String getPhoneNo() <- replace String getPhoneNo();

 different names
 parameter mappings (implicit/explicit)
 before / replace / after
 base calls

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 29

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch su

Overriding
dispatch su

Role Playing
Callout binding

dispatch role → base

Callin binding
dispatch role ← base

SubClass
method()

method() SuperClass
method()

:SubClass

«instance-of»

:Person
phoneNo

«base»:Employee
officePhoneNo

«instance-of» «instance-of»

Person
getPhoneNo()

«playedBy»Employee
getPhoneNo ← getPhoneNo

 getPhoneNo()getPhoneNo()

which context
to select the appropriate

role instance?

which context
to select the appropriate

role instance?

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 30

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import

dispatch sub → super

Overriding
dispatch super → sub

Substitutability
pass an instance of sub class
where the super class is expected

Role Playing

Detailed Comparison

?

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 31

www.objectteams.org

Inheritance (1): Import

Sub-class imports from super-class
all members

except private

accessibility / scoping

extends the scope of the sub-class

renaming?
only in few languages

interpretation
forwarding sub → super (classes)

SuperClass
method()

SubClassmethod()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 32

www.objectteams.org

Role-Playing (1): Import

Role-object imports from base-object
only by declared callout binding

inference as an option

accessibility / scoping

extends the scope of the role-object

renaming
as part of callout binding (incl. parameter mapping)

interpretation
forwarding role → base (objects)

SuperClass
method()

SubClassmethod()

:Person
name

«base»
1. getName()

:Employee
salary

«instance-of» «instance-of»

Person
getName()

«playedBy»Employee
getName → getName

1.1 getName()

Supporting EvolutionSupporting Evolution

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 33

www.objectteams.org

Import in OT/J:

A callout method binding

... can use different names on role / base sides

... can adjust signatures
implicitly: discard unused values

explicitly: parameter mappings

A callout to field

Inferred callout
for self calls

for methods declared in a common interface

String getName() -> String getName();

String getName() -> get String name;

:Person
name

«base»
1. getName()

:Employee
salary

«instance-of» «instance-of»

Person
getName()

«playedBy»Employee
getName → getName

1.1 getName()

No other access to «base»
 encapsulate semantics
 separate two worlds
 specific privilege

No other access to «base»
 encapsulate semantics
 separate two worlds
 specific privilege

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 34

www.objectteams.org

Inheritance (2): Overriding

Sub-class overrides super-class behavior
by name equality

except private, final

renaming?
only in few languages

interpretation
interception super → sub

BUT
who selects among multiple sub-classes?

SubClass
method()

method()
SuperClass

method()

SubClass2
method() SubClass3

method()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 35

www.objectteams.org

Inheritance (2): Overriding

Sub-class overrides super-class behavior
by name equality

except private, final

renaming?
only in few languages

interpretation
interception super → sub

Dynamic context selects behavior
the dynamic type of the current object

SubClass
method()

method()
SuperClass

method()

:SubClass

«instance-of»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 36

www.objectteams.org

Role-Playing (2): Overriding

Role-object override base methods
only by declared callin binding

<no exception>

renaming
as part of callin binding (incl. parameter mapping)

interpretation
interception role ← base (objects)

:Person
phoneNo

«base»:Employee
officePhoneNo

«instance-of» «instance-of»

Person
getPhoneNo()

«playedBy»Employee
getPhoneNo ← getPhoneNo

Supporting EvolutionSupporting Evolution

SubClass
method()

method()SuperClass
method()

:SubClass
«instance-of»

1. getPhoneNo()1.1 getPhoneNo()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 37

www.objectteams.org

Role-object override base methods
only by declared callin binding

<no exception>

renaming
as part of callin binding (incl. parameter mapping)

interpretation
interception role ← base (objects)

Role-Playing (2): Overriding

BUT
who selects among multiple base objects??

:Person
phoneNo

«base»:Employee
officePhoneNo

«instance-of» «instance-of»

Person
getPhoneNo()

«playedBy»Employee
getPhoneNo ← getPhoneNo

1. getPhoneNo()1.1 getPhoneNo()

«base»

:AITOTreasurer
aitoPhoneNo

?

SubClass
method()

method()SuperClass
method()

:SubClass
«instance-of»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 38

www.objectteams.org

Role-Playing (2): Overriding

Role-object override base methods
only by declared callin binding

<no exception>

renaming
as part of callin binding (incl. parameter mapping)

interpretation
interception role ← base (objects)

Dynamic context selects behavior
role objects live in a team object

:Person
phoneNo

«base»:Employee
officePhoneNo

«instance-of» «instance-of»

Person
getPhoneNo()

«playedBy»Employee
getPhoneNo ← getPhoneNo

1. getPhoneNo()1.1 getPhoneNo()

SubClass
method()

method()SuperClass
method()

:SubClass
«instance-of»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 39

www.objectteams.org

Teams as Context

Roles depend on context

In OT/J contexts are reified as Teams
roles are inner classes of a team class

role instances are inner instances of a team instance

Each team instance can be (de)activated
active team instances contribute to the system state

dispatch considers system state

several mechanisms: globally, per thread, implicitly, temporarily ...

:Person
phoneNo
getPhoneNo()

 c :Company c :Company

name
hire(Person p)

name
hire(Person p)

:Employee
officePhoneNo
getPhoneNo ← getPhoneNo

«playedBy»

1. getPhoneNo()

Off On

if (c.isActive())

1.2 getPhoneNo()

SubClass
method()

method()SuperClass
method()

:SubClass
«instance-of»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 40

www.objectteams.org

Teams as Activation Context

Roles depend on context

In OT/J contexts are reified as Teams
roles are inner classes of a team class

role instances are inner instances of a team instance

Each team instance can be (de)activated
active team instances contribute to the system state

dispatch considers system state

:Person
phoneNo
getPhoneNo()

 c :Company c :Company

name
hire(Person p)

name
hire(Person p)

:Employee
officePhoneNo
getPhoneNo ← getPhoneNo

«playedBy»

 getPhoneNo()

Off On

if (c.isActive())

 getPhoneNo()

 globally
 per thread
 implicitly
 per block

activation mechanisms:

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 41

www.objectteams.org

Overriding in OT/J

A callin method binding ...

... declares that calls to the base should be intercepted by its role
... can use different names on role / base sides

... can adjust signatures
implicitly / explicitly

... can have a guard predicate: when (expr)
Event / Condition / Action

Binding variants
before, replace or after

String getPhoneNo() <- replace String getPhoneNo();

:Person
phoneNo

«base»:Employee
officePhoneNo

«instance-of» «instance-of»

Person
getPhoneNo()

«playedBy»Employee
getPhoneNo ← getPhoneNo

1. getPhoneNo()1.1 getPhoneNo()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 42

www.objectteams.org

Buy 2 – Get 1 for Free

2 Mechanisms, 3 styles of dispatch
Forwarding

Interception

Delegation w/ Overriding
= Forwarding
 + Interception

 ABase
baseMethod

 ARole
roleMethod() callout

roleMethod()

 ABase
baseMethod

 ARole
roleMethod() callin

baseMethod()

 ABase
baseMethod1()

baseMethod2()

 ARole
overridingM()

roleMethod()
 callout

roleMethod()

callin

selfcall

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 43

www.objectteams.org

Inheritance vs. PlayedBy in OT/J (2/3)

Inheritance
Import

dispatch sub → super

Overriding
dispatch super → sub

Substitutability
pass an instance of sub class
where the super class is expected

Role Playing
Callout binding

dispatch role → base

Callin binding
dispatch role ← base

Translation polymorphism

Detailed Comparison

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 44

www.objectteams.org

roles (usually) live within the team onlyroles (usually) live within the team only

Substitutability

Are the following assignments legal?

Normally not, but...

When a role object leaves the team
it is lowered to its base

When a base object enters a team
it can be lifted to a role

Substitutability by translation → Translation Polymorphism

Employee emp= ...

Person person= ...

person= emp; // legal?

emp= person; // legal?

1.

2.

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 45

www.objectteams.org

Role Multiplicities

 t1: TeamA t1: TeamA

lift(b1, t1) r1 lift(b1, t2) r3

lift(b2, t2, RoleA) r4 lift(b2, t2, RoleB) r5

Translation base role: Lifting
A base can have many roles,
but only one per context: Team

b1 b2

r1: RoleA

 t2: TeamA t2: TeamA

r2: RoleA r3: RoleA r4: RoleA r5: RoleB

RoleA<@t2>

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 46

www.objectteams.org

Role Life Cycle

Roles are created …
on demand if lifting finds no existing instance
or, explicitly using new

Role have state
state is persistent across invocations / liftings

Garbage Collector “knows”
Team maintains …

mapping base → role
provides reflective functions (seldomly needed):

 hasRole(aBase)
 getRole(aBase, aRoleClass)
 unregisterRole(aRole)
 ...

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 47

www.objectteams.org

Lifting - Where&When?

All data flows entering the team
the callin call target ✔

CGraphCGraph

EdgeColoredEdge

ColoredNode Node

«playedBy»

«playedBy»

team class CGraph {

 class ColoredEdge playedBy Edge {

 setStartNode(ColoredNode n) ← after setStartNode(Node n);

 ColoredNode getStartNode() → Node getStartNode();

 }

 setRootNode(Node as ColoredNode root)

}
declared lifting (team method)declared lifting (team method)

a callin argument

a callout result

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 48

www.objectteams.org

Translation Polymorphism

Two-way substitutability
support data flows in both directions
no ClassCastException

if desired: LiftingVetoException

Hidden at source level
no explicit conversions

if needed: ILowerable.lower()

no manual maintenance of instance mapping

Eat the cake and have it
flexibility of multiple instances
no disadvantage of “object schizophrenia”
instances are “almost the same”

Pending: Optimizations
(compiler / runtime)

Pending: Optimizations
(compiler / runtime)

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 49

www.objectteams.org

Inheritance vs. PlayedBy in OT/J

Inheritance
Import / acquisition

dispatch sub → super

Overriding
dispatch super → sub

Substitutability
pass an instance of sub class
where the super class is expected

Role Playing
Callout binding

dispatch role → base

Callin binding
dispatch role ← base

Translation polymorphism
lowering role → base

lifting role ← base

two-way substitutability

Detailed Comparison

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 50

www.objectteams.org

Roles & Teams

Role playing: the powers of inheritance plus ...
Dynamism

roles can come and go (same base object)

Multiplicities
one base can play several roles (different/same role types)

Teams
team activation

controls the effect of all contained callin bindings

encapsulate a collaboration
set of interacting roles

R R

R

«playedBy»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 51

www.objectteams.org

Properties of Roles (2/4)

15 Criteria by Friedrich Steimann
and their mapping to Object Teams

An object may play different roles simultaneously
✔ roles are instances, base is agnostic of its roles

An object may play the same role several times, simult.
✔ differentiate by several containing team instances

An object and its roles have different identities
✔ roles are distinguishable instances

An object and its roles share identity
✔ translation polymorhpism hides difference,

use roleEQ() for relaxed comparison

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 52

www.objectteams.org

Properties of Roles (3/4)

15 Criteria by Friedrich Steimann
and their mapping to Object Teams

Roles restrict access
✔ accessibility only via callout

Different roles may share structure and behavior
✔ inheritance among roles, or: delegation to base

Objects of unrelated types can play the same role
✔ role type as an a-posteriori super-type

BusinessBusiness

Person

Company

no useful
super-type
no useful

super-typeCustomer

«playedBy»

«playedBy»

IndividualCustomer

CorporateCustomer

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 53

www.objectteams.org

And now for a Message
from our Sponsor ...

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 54

www.objectteams.org

Fact Sheet

ObjectTeams/Java (OT/J) since 2001

Java += roles, teams, bindings
OTJLD 1.0 (current 1.2) July 2007

Object Teams Development Tooling since 2003

Java Compiler += OT/J constructs
JDT for OT/J (code assist, ui, launch ...)

Other
OT/Equinox: Equinox += aspect bindings since 2006

Application
Case studies (project TOPPrax)

Class room

OTDT

UML2 tools (base on EMF/GEF/GMF) 2009

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 55

www.objectteams.org

Incremental vs. Full Adoption

Adaptation
Given an existing application

could be 3rd party

Any change task can be implemented as a team
new feature
changing an existing feature
even bug fixes (if you like)

Initial design
Fully develop using Object Teams
Leverage additional dimension of separation

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 56

www.objectteams.org

Applying Inheritance
to Containment:

Team Inheritance

R R

R

R R

R

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 57

www.objectteams.org

Team Inheritance

Inheritance = Import, Override, Substitutability
Attributes, Methods, Role Classes
Propagating Specialization

public team class T2 extends T1
{
 protected class R2 {
 void m3() {
 doMyStuff();
 }
 }
}

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 58

www.objectteams.org

Team Inheritance

Virtual classes
Type safe covariance with dependent types
Family Polymorphism

Exception: role migration (to other team)

BoardGameBoardGame

Player Token

Move Rule validate(Move m)

ChessChess

Player Token

Move Rule validate(Move m)

Move<@BoardGame.this>
 ≙ BoardGame.Move

 ≙ Chess.Move

Consistent Polymorphism

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 59

www.objectteams.org

Team Inheritance

Consistently specialize a set of role classes
No danger of mixing roles from different teams
Scalable Template&Hook

BoardGameBoardGame

Player Token

Move Rule validate(Move m)

ChessChess

Player Token

Move Rule validate(Move m)

Move<@BoardGame.this>
 ≙ BoardGame.Move

 ≙ Chess.Move

Consistent Polymorphism

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 60

www.objectteams.org

Team Inheritance

Q: which type “Move” is used?
A: the one valid in the current context

Chess.Rule → Chess.Move, TicTacToe.Rule → TicTacToe.Rule

Q: what if I don't have a context?
I hold a reference to a Rule, not knowing what game

A: you have to know what game
final BoardGame myGame = …
Rule<@myGame> rule = myGame.getSomeRule();
Move<@myGame> move = myGame.getRandomMove();
rule.validate(move);

BoardGameBoardGame

Player Token

Move Rule validate(Move m)

ChessChess

Player Token

Move Rule validate(Move m)

Consistent Polymorphism

 – instance!

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 61

www.objectteams.org

Team Inheritance

A: you have to know what game
final BoardGame myGame = …
Rule<@myGame> rule = myGame.getSomeRule();
Move<@myGame> move = myGame.getRandomMove();
rule.validate(move);

Q: haven't I lost polymorphism, now?
A: no, myGame is still polymorphic

type Move is dynamically bound relative to myGame.
and everything is rock solidly type-safe

BoardGameBoardGame

Player Token

Move Rule validate(Move m)

ChessChess

Player Token

Move Rule validate(Move m)

Consistent Polymorphism

 – instance!

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 62

www.objectteams.org

Team Inheritance

team class BoardGame

{

 abstract class Player {...}

 Player a;

 void init() {

 a = new Player();

 }

}

team class Chess extends BoardGame

{

class Player {...}

}

Team BoardGame is a template: incomplete implementation
Role Player is a hook: opening filled in team Chess
Team BoardGame is a template: incomplete implementation
Role Player is a hook: opening filled in team Chess

abstract team class BoardGame

this.new Player();

abstract class C

{

 abstract void hook();

 void template() {

 this.hook();

 }

}

class D extends C

{

void hook() {...}

}

Class level Template&Hook

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 63

www.objectteams.org

Team Inheritance

Roles are virtual classes
can be overridden in sub-teams
overiding role implicitly inherits from overridden role
→ mild form of multiple inheritance

→ two kinds of super-call:
super(); (constructor) – super.m(); (method)

tsuper(); (constructor) – tsuper.m(); (method)

B EB

B EB

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 64

www.objectteams.org

Applying Translation Polymorphism
to Inheritance Structures

“Smart Lifting”

R

R

R

«playedBy»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 65

www.objectteams.org

Most Specific Type

Attempt #1
Connect roots of inheritance trees
Let lifting always choose the most specific type

It works
always use R1 for any base : B0
cannot handle multiple subtypes of R0

R0

R1

B0

B1

B2

«playedBy»

R2

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 66

www.objectteams.org

Lifting with Constraints

Individual playedBy declarations
constrains lifting to bases of more specific types
covariant redefinition of «base»

Mapping of inheritance structures
1:1

R0

R1

B0

B1

B2

«playedBy»

R2
«playedBy»

«playedBy»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 67

www.objectteams.org

Lifting with Constraints

Individual playedBy declarations
constrains lifting to bases of more specific types
covariant redefinition of «base»

Mapping of inheritance structures
1:1
ignore sub-base B3
insert R1 (never instantiated)
skip B1 (subsumed by R0)

B0

B2

«playedBy»
R0

R2
«playedBy»

B3

R1 B1

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 68

www.objectteams.org

Double Dispatch

Adding instance dispatch to method dispatch

Expr Expr
«playedBy»

BinOpBinOp
«playedBy»

Literal
«playedBy»

Literal

team class PrettyPrinter extends ExprVisitor {

 abstract class Expr playedBy Expr {
 abstract accept(); }
 // other role classes
 void visit(Expr as Expr node) {
 node.accept(); }
}
void print(Expr node) {
 ExprVisitor visitor = new PrettyPrinter();
 visitor.visit(node); }

separate namespaces:
import base mybase.Expr;

dispatch on visit:
 selects the Function

dispatch on node:
 selects the Node-Type

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 69

www.objectteams.org

Double Dispatch

Adding instance dispatch to method dispatch

Expr Expr
«playedBy»

BinOpBinOp
«playedBy»

Literal
«playedBy»

Literal

team class PrettyPrinter extends ExprVisitor {

 abstract class Expr playedBy Expr {
 abstract void accept(); }
 class BinOp playedBy BinOp {
 Expr getLeft() -> Expr getLeft();
 void accept() {
 getLeft().accept(); /* ... */ }

}

separate namespaces:
import base mybase.Expr;

Smart Lifting selects:
 Team: Function
 Role: Node Type

void visit(Expr as Expr node) { node.accept(); }

void print(Expr node) {
 new PrettyPrinter().visit(node); }

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 70

www.objectteams.org

Applying Generics
to Role Playing

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 71

www.objectteams.org

Generic Callin Bindings

Problem:
replace callin binding requires 2-way compatibility

 callin T1 roleMethod() {
 T1 oldResult = base.roleMethod();
 return new T1();
 }
 T1 roleMethod() <- replace T1 baseMethod();

Java 5 introduces covariant returns
binding to T2 baseMethod() fails → ClassCastException

OT/J enforces the use of generics where needed
explicitly capture covariant methods
use type bound

 callin <E extends T1> E roleMethod() {
 return base.roleMethod(); // OK, new T1() NOK
 }
 <E extends T1> E roleMethod() <- replace T1+ baseMethod();

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 72

www.objectteams.org

Base Class Generalization

Recall this structure

SpecificBase1

specificBehavior1()

 TeamComponent TeamComponent

SpecificRole1
commonBehavior → specificBehavior1

«playedBy»

SpecificBase2

specificBehavior2()

SpecificRole2

commonBehavior → specificBehavior2

«playedBy»

CommonSuperRole

commonBehavior ()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 73

www.objectteams.org

Base Class Generalization

SpecificBase1

 TeamComponent TeamComponent

SpecificRole1

SpecificRole2

CommonSuperRole

SpecificBase2

But,
how can this method be typed?

 void invokeOnRole(? as CommonSuperRole anyObj) {
 anyObj.commonBehavior();
 }

want to allow SpecificBase1 and SpecificBase2

answer:
new kind of type bound:

 <B base CommonSuperRole>
void invokeOnRole(B as CommonSuperRole anyObj) {

 anyObj.commonBehavior();
 }

B is the union of all classes
that can be lifted to CommonSuperRole

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 74

www.objectteams.org

Composed Structures

Applying Object Teams Concepts
to each other

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 75

www.objectteams.org

Nesting – Stacking – Layering

Nesting
Team can contain teams as its roles

Nesting applies to instances, too

Stacking
Role can adapt another team

Multiple roles coordinate multiple teams

Layering
Roles adapt roles of another team

Define a view of an existing team

Team plays the role Role

Team plays the role Base

Role plays the role Base

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 76

www.objectteams.org

Layering – Detail

public team class ColoredGraph
{

 protected class CNode
playedBy Node

 { ... }

 protected class CEdge
playedBy Edge

 {
 abstract CNode getStart();

 getStart -> getStartNode;
 }
}

public team class Graph
{

 public class Node {
 ...
 }

 public class Edge {
 Node getStartNode()..
 }

}

Missing anchor (team instance) for role type graph.Graph.Node outside its team context (OTJLD 1.2.2(b))
<@ >

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 77

www.objectteams.org

Layering – Detail

public team class ColoredGraph
{
 final Graph graph = ...;

 protected class CNode
playedBy Node<@graph>

 { ... }

 protected class CEdge
playedBy Edge<@graph>

 {
 abstract CNode getStart();

 getStart -> getStartNode;
 }
}

public team class Graph
{

 public class Node {
 ...
 }

 public class Edge {
 Node getStartNode()..
 }

}

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 78

www.objectteams.org

Properties of Roles (4/4)

15 Criteria by Friedrich Steimann
and their mapping to Object Teams

Roles can play roles
✔ use team layering

The sequence in which roles may be acquired
and relinquished can be subject to restrictions
✔ role-of-role, guard predicates, role constructor throwing

A role can be transferred from one object to another
✔ use IBaseMigratable

class President implements IBaseMigratable
playedBy Person { /* body */ }

void transferPresidency(Person as President currentP,
 Person newP) {

currentP.migrateToBase(newP);

}

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 79

www.objectteams.org

A Meta Model
for Object Teams

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 80

www.objectteams.org

Meta Model for OT/J?

Combinations?
Role & Team: nested Team
Role & Base: layered Team, Role-of-Role
Team & Base: stacked Teams

Model evolution?
group of classes collaboration of roles

Class

Role

Team

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 81

www.objectteams.org

Meta Model for OT/J !

Class

 Collaboration Collaboration

Team Participant
Contains1

*

InteractsWith

 RolePlaying RolePlaying

Role Base
PlayedBy

1

1

«playedBy»

«playedBy»

«playedBy»

«playedBy»

1
*

In order to explain Roles
you first have to explain Roles.

In order to explain Roles
you first have to explain Roles.

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 82

www.objectteams.org

Big Picture

Architecture
with

Object Teams

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 83

www.objectteams.org

Classes – Packages - Components

Traditional decomposition

New feature requested
identify affected classes
no way to define new feature as a module

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 84

www.objectteams.org

Be Inventive!

We need to zoom out!

See a new solution?
No.
Try again!

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 85

www.objectteams.org

Entering The Next Level

Can you see it now?
Now?
Now!

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 86

www.objectteams.org

Layered Design

In truely layered designs
each layer may have its very own structure
layers are connected to each other by a mapping
mapping

can be 1:n
exposes /hides elements from other layer

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 87

www.objectteams.org

Layers with Object Teams

Mapping
playedBy to connect classes / objects
callin / callout to connect methods / fields

Modules
Role defines view on base class
Team encapsulates a set of roles

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 88

www.objectteams.org

Summary
Conclusion
Epilogue

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 89

www.objectteams.org

R R

R

Summary

«playedBy»

<T>

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 90

www.objectteams.org

Summary

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 91

www.objectteams.org

Objectivity
Objects are exhaustively defined in one place
Definition must consider all special cases

Subjectivity
Consider only relevant properties
Different perspectives

consider different properties as relevant
may express exceptions

Express how your perspective relates to „the world“

Subjectivity in Software Engineering
Perspectives during RE
Views / diagrams during design
In programming: Roles!

 Roles Rule! Roles Rule!

Objectivity ↔ Subjectivity

 Object Teams makes Roles Real Object Teams makes Roles Real

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 92

www.objectteams.org

Epilogue

In the end also “Role” is just a word
We may try to define this word

as referring to something out there

Or we may find it useful
when used together with other words like “Context”
in order to create a new game of words

word thing

word

word

game

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 93

www.objectteams.org

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 94

www.objectteams.org

Mechanisms
in more Detail

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 95

www.objectteams.org

Components: OT/Equinox

Bundle ABundle A

CA1 CA2

Bundle BBundle B

export

internal

CB1

CB2

CB4
CB3

«require»

Bundle CBundle C

CC1
Team1Team1

import base CB1;
import base CB3;

import base CB1;
import base CB3;

R2

...
Require-Bundle: B...

MANIFEST.MF

R1
rm←bm

IB2

CA2

extension
point

«aspectBinding»

«playedBy»

«playedBy»

<extension
 point="org.objectteams.otequinox.aspectBindings">

 <aspectBinding>
<basePlugin id=”B”/>
<team class=”Team1”

activation=”ALL_THREADS”/>
 </aspectBinding>

plugin.xml

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 96

www.objectteams.org

Patterns

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 97

www.objectteams.org

Connector Pattern

Abstract team provides implementation
Implement Use Case only in terms of roles

Team and base package are independent
Only the Connector knows both

Connector adds bindings to base package
No implementation, just integration

Reusing the collaboration
Multiple Connectors for multiple base packages

FlightBookingFlightBooking

Passenger

Segment

Flight

 FlightBonus FlightBonus

 Bonus Bonus

 Subscriber

 BonusItem

 Subscriber

 BonusItem

«adapts»

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 98

www.objectteams.org

Virtual Restructuring

Define this view
team class PrintFlight {

class FlightRole playedBy Flight {
int getSegmentCount() → get List<Segment> segments

with { result ← segments.size() }
SegmentRole segmentAt(int i) → get List<Segment> segments

with { result ← segments.elementAt(i) }

}
}

base class unchanged

new interface as a view

Given this data class
class Flight {
 private List<Segment> Segments;
}

Traditionally
apply refactoring: Encapsulate Collection

Parameter MappingParameter Lifting

http://www.objectteams.org/
http://www.objectteams.org/

. .09 07 09 Stephan Herrmann - ECOOP' Summer School09 9 9

www.objectteams.org

Observer-Mediator-Actuator

C1 C2 C3 C4

 adaptation
base application

 Mediator Mediator

ObserverRole

MediatorRole1 MediatorRole2

mediatorStorageField : DataStructure

ActuatorRole

write read

write

additionalReference

read

intercept
(non-modifying)

decorate intercept
(modifying)

decorate

http://www.objectteams.org/
http://www.objectteams.org/

. .09 07 09 Stephan Herrmann - ECOOP' Summer School09 1 00

www.objectteams.org

Relationships

Implementing a stateful relationship

 Course Course

enrolled

*

1

Participant
grade
attendance

«playedBy»

1
Student

title
hasStarted()

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 101

www.objectteams.org

http://www.objectteams.org/
http://www.objectteams.org/

09.07.09 Stephan Herrmann - ECOOP'09 Summer School 102

www.objectteams.org

Topics

Role object life cycle
lifting, instance management, multiplicities

Team inheritance
specializing whole frameworks w/ propagation

Patterns
Connector: separating implementation ↔ binding

Base class generalization: post-hoc super type

Virtual restructuring: changing structure not code

...

Architectures
Observer-Mediator-Actuator, Stacking, Nesting, Layering

Component technology
OT/Equinox: architecture level aspect bindings

http://www.objectteams.org/
http://www.objectteams.org/

