
Confinement and Representation Encapsulation
in Object Teams

Bericht-Nr. 2004/06

Stephan Herrmann
stephan@cs.tu-berlin.de

ISSN 14369915

Confinement and Representation Encapsulation

in Object Teams

Stephan Herrmann

Abstract

The language ObjectTeams/Java introduced the concept of Teams as
a new module construct which was inspired by aspectual components and
family polymorphism. Research in the field of alias control, confinement
and ownership tends to look at modularity and encapsulation from a quite
different perspective. In this paper we present an enhancement to the type
system of ObjectTeams/Java which allows to combine the given benefits
of flexible aspect composition with additional encapsulation constraints
thus providing a basis for modular reasoning and guaranteed security
constraints. We adopt concepts from confined types and the universes
model. The enhancement of the type system uses only two new keywords
for a variety of encapsulation schemes. We demonstrate why family poly-
morphism is very appropriate as a basis for the desired encapsulation
constraints.

1 Protection Goals

Research in the field of alias control and related techniques [2] strives for more
safety and security in object oriented programs. Obviously, the flat structure of
objects on the run-time heap imposes problems to locality that would not exist,
if strict hierarchical modules would be used. Still, the known advantages of the
object oriented model prevail and solutions are sought as additions to standard
OO programming languages.

The diversity of proposed techniques is striking and at a closer look, some
of the differences are founded in very different motivations for restricting and
analyzing programs. The work presented in this paper is influenced by three
approaches. We refer to the techniques of family polymorphism [3], confined
types [16] and universes [10]. In our programming language ObjectTeams/Java
[5] we combine capabilities of all three techniques.

Before presenting any details of specific techniques, we point out the very
different goals of the three approaches. Only after understanding the goals, we
can think about a smooth integration that should serve all three goals.

1.1 Object families

Family polymorphism[3] is about grouping a set of classes into a larger class,
such that member classes, and hence their instances, are uniquely owned by the
enclosing instance. While the notion of families is motivated quite intuitively

1

as a means for conceptual modeling, the focus of the techniques involved lies
on type safety in the traditional understanding: ensuring that each attribute
or method accessed on a target object is in fact present, and that static type
checking can guarantee all runtime values to conform to their respective decla-
rations.

Two questions are answered by family polymorphism: (1) how can a group
of (mutually recursive) classes be refined in a way that internal consistency is
given, and (2) how can the refinement be hidden from external clients, i.e., how
can the whole group be handled polymorphically.

Question (1) is answered by virtual classes, which help to refine relationships
between classes along with the classes themselves. Refinement of relationships
implies covariant redefinitions of signatures, which—if admitted unrestrictedly—
is very hard to type check statically (see Eiffel’s concept of “system level validity”
which requires a global data flow analysis for type checking[9]!). Question (2)
is about locality. It calls for a special type discipline in order to protect clients
against problems resulting from covariant redefinitions. Family polymorphism
employs instance dependent types in order to statically check that member in-
stances are not confused between families, which would otherwise result in the
mentioned problems of covariance. More specifically, each family instance has
its own set of member types, which is incompatible with all member types of
any other family instance.

Family polymorphism raises the level of reuse and adaptation from classes
to groups of classes.

1.2 Package level confinement

Confined types [16] provide alias control in order to confine certain objects to a
well-defined scope of visibility. In this approach, Java packages are used as the
scope from which objects should not escape. At the level of static scoping, Java’s
visibility modifiers seam sufficient. However, at the instance level widening of a
confined object to a super-type with different visibility would compromise the
protection.

In [16] the authors propose a set of rules for confined classes that prevent
explicit widening to a non-confined type. Additionally, the concept of “anony-
mous methods” is introduced in order to make implicit widening of this safe,
which occurs when invoking an inherited method.

Motivating examples for confined types deal with security issues, where cer-
tain information must be a secret of a well-defined portion of the program. This
prevents incidental or malicious programming errors which could otherwise com-
promise the security of the program.

1.3 Representation encapsulation

The universes approach [10] relates to issues of modular reasoning. Again,
groups of objects are considered, but here the central question concerns the
invariants the can be defined for such a group. Once the invariant for an object
depends on the state of other objects, it is desirable to hide those element
objects. This calls for a kind of alias control where element objects are owned
by exactly one object, which has the exclusive right to modify its elements.

2

The universes model uses two modifiers to annotate a program for analysis.
A representation type (rep T) denotes objects that are owned by the current
object. A readonly reference (of type readonly T) allows access to its target
object only if the target object will not be changed by the operation.

Furthermore, the set of objects that can be mentioned in an invariant is re-
stricted. As a result, for any given invariant, it suffices to analyze the methods
of this class and its representation objects in order to prove that all method
calls will preserve the invariant. This is in contrast to unconstrained models,
where external clients may invoke methods of element objects (supposed repre-
sentation objects), which by some side-effect might break the invariant of the
compound object without giving the compound object a chance to even detect
this situation.

1.4 General purpose language support

In order for the presented approaches to be applied in praxis, we see two possible
roads: either (1) protection properties of a program are to be described outside
the program using a formalism separated from the programming language or
(2) a general purpose programming language should unify existing techniques
in order to provide choices to the programmer what and how to protect.

The first option provides greatest flexibility. Tools for checking protection
properties can be developed independently of compilers. Care must be taken,
however, to minimize the additional burden of specifying encapsulation. If sep-
arate property files were used, double maintenance and the danger of inconsis-
tency would be considerable obstacles to these techniques. Embedding speci-
fication into program comments by the use of special tags is a road taken by
JML [7] and others. This avoids the need for maintaining separate files, while
allowing to use a standard compiler or a specialized tool on the same sources.

However, we believe that a deeper embedding of specification into the pro-
gram is desirable. More specifically, we see the opportunity for synergetic ef-
fects between different language mechanisms, some of which contribute to the
operational semantics of a language while others only constrain the set of legal
programs. In this vein we propose an integration of confined types [16] and ideas
from universes [10] into the programming language ObjectTeams/Java [5, 12]
which intrinsically applies the concepts of family polymorphism [3].

2 Object Teams

The Object Teams model, which has its roots in Aspectual Components [8], has
first been presented in [5]. Its central concept is a new kind of module, a Team,
which combines properties of classes with those of a package. Teams realize
the concepts of family polymorphism [3]. A Team corresponds to a family, the
contained objects are called roles. Role classes are virtual classes.

In the context of Team-inheritance, furtherbinding of role classes is realized
by so-called implicit inheritance, where a role class extends a role class inherited
from the super-Team if both classes have the same name. Note, that implicit
inheritance does not establish a sub-type relationship, which would otherwise be
unsafe due to covariance. Polymorphism only applies to the Team as a whole.
Within a Team, regular inheritance between roles is still available. In case of

3

competing implementations of the same method, the implicit super-class has
priority over the explicit super-class. The new dimension of inheritance also
comes with a new keyword for super calls: tsuper, which invokes a correspond-
ing method version from the super-Team.

Each role type depends on the enclosing Team instance (instance dependent
types). Within a Team T and its roles the containing Team instance is implic-
itly available although it can still be explicitly referred to as this or T.this.
Thus the instance dependency is usually invisible within Teams and roles. By
contrast, external clients need to specify role types as teamInstance.RoleType.
In this case we speak of externalized roles. Two role types t1.R and t2.R are
only compatible if the instances t1 and t2 are provably the same instance. By
requiring the value t1 in t1.R to be an immutable variable (final), a simple
flow analysis is supported.1

2.1 Further concepts

The concepts presented above suffice for the discussion at hand. However, the
intention behind Object Teams can only be understood, when also looking at
an additional dimension of composition:

A role class may be bound to a class outside the Team (class R playedBy
B). In that case the language ensures, that each role instance always has a
valid link to a base instance of the declared type. Data-flows which cross the
boundary of a Team automatically translate base objects to roles and vice versa.
The translations are called lifting and lowering. Substitutability involving
lifting or lowering is called translation polymorphism [4].

Based on the role-base-binding two kinds of method bindings can be defined.
Method bindings are denoted in a declarative style and are part of a role class.
Callout bindings, define automatic forwarding from a role to its base. Callin
bindings insert triggers into base methods that call into the role. Callin bind-
ings can be interpreted as aspect weaving. Both kinds in combination setup a
selective form of instance-based inheritance: a role inherits methods from its
base via callout and it may override base methods using callin.

Object Teams finally provide dynamic aspects. Any callin binding is only
effective with respect to a Team instance that has been activated. Team acti-
vation and deactivation happens at runtime and can be controlled within the
program by different means.

3 Protection Mechanisms in Object Teams

We will now step by step introduce the mechanisms of ObjectTeams/Java that
contribute to encapsulation in its different flavors. In Sect. 4 we will show how
the approaches presented in Sect. 1 can be mapped to our model in order to
show soundness of our model in relation to those existing approaches.

1See [14] for a formal analysis of Java’s definite assignment rule.

4

3.1 Encapsulation boundary

Alias control and confinement strive for improved modularity by introducing
boundaries that help to enforce different levels of information hiding. While
some approaches use existing constructs like Java packages and try to give more
meaning to those constructs, other approaches tend to super-impose such bound-
aries as a secondary structure. For encapsulating run-time instances the existing
module constructs are in fact quite dis-satisfactory.

Investigating special forms of encapsulation with respect to Object Teams
was motivated by the observation, that the new module construct team provides
a natural boundary between items to be protected and the outside.

A Team instance as a natural boundary facilitates some tasks which in other
approaches require additional effort. In ObjectTeams/Java we need no modifiers
like rep (for representation) or confined to mark the elements that should be
protected. Rather, each role class that is not declared public is subject to some
kind of instance protection.

There is also a specific reason for choosing universes[10] and confined types
[16] as a model for alias control in Object Teams. Both papers contain hints
at the suitability of family polymorphism for the issues at hand. In universes
“types have to be interpreted relative to the current this object Xthis” [10].
Such type interpretation is exactly, how family polymorphism is founded in the
type system of ObjectTeams/Java, where each role type is always anchored to
the enclosing Team instance. This facilitates static type checking as we will see
below.

Confined types suffer from lack of support for refinement. In that approach
the encapsulation boundary is given by packages. While this is promising from
a pragmatic point of view, the authors of [16] need laborious indirections when
refining a package RSA for a general key-pair-infrastructure to a package Secure.
They observe: “this suggests that virtual types might be a better fit for confined
types, as they allow subclassing of a whole family of classes in such a way that
use relationships between classes in the original family become use relationships
between classes in the derived family” [16].

The desired capability of sub-classing a whole family of classes is given in
Object Teams using Team inheritance and implicit inheritance between roles.
Team inheritance is mainly orthogonal to the issues at hand. A sub-Team
defines a completely new scope. For this scope some encapsulation constraints
may need to be analyzed anew, because the confinement status of a role in a
super-Team is also an obligation for all its sub-Teams.

In the following we will see in depth how roles are encapsulated by their
enclosing Team instance.

3.2 Strict role confinement

We will start with the strongest form of encapsulation: complete confinement,
whereby no reference to a contained role may ever escape from the enclosing
Team instance. This level is useful for implementing secrecy. It can be achieved
by combining type visibility with restricted inheritance along with further con-
cealment constraints.

5

«team»
t : MyTeam

Super

widening not allowed

reference not allowed{protected}
r1: t.R1

{protected}
r2: t.R2

«restrictedBy»(Ifc)

Figure 1: Roles as confined objects

Fig. 1 illustrates this situation. A Team instance t contains two role in-
stances r1 and r2, whose types depend on t (t.R1 and t.R2). Confinement
must achieve that no outside object ever references one of the roles r1,r2,
whereas roles and Team may reference each other freely.

3.2.1 Type visibility.

In ObjectTeams/Java roles have only two levels of visibility: public and pro-
tected. Due to implicit inheritance private visibility would lead to inconsisten-
cies. Since a Team class also has the function of a package for its contained
roles, there is no point in distinguishing class and package level visibility. For
roles the protected visibility is restricted to the enclosing Team instance and its
roles.

A protected role type can not be used in declarations of the external interface
of a Team, which includes all non-private Team features and all public features
of public roles.

Given these rules a protected role would be completely invisible from the
outside had it not been for polymorphism by which a role reference could still
leak to the outside by widening to a non-restricted super-type (see class Super
in Fig. 1). This super-type may be a class or an interface and may be a member
of a Team (i.e., a role) or a regular type.

For the next paragraphs we will assume role classes that do not declare to
implement any visible interfaces. It remains to be shown that the super-class
of a role cannot be used for reference leakage. In Sect. 3.3 we will show, how
interfaces can be used for a more specific control of accessibility.

3.2.2 Restricted inheritance.

Since every class in Java (except Object) has a super-class, widening to this
super-class (commonly: widening to Object) would allow to view any object by
a globally visible type. In order to restrict such widening we introduce restricted
inheritance which uses the following syntax:

6

protected c l a s s Role
extends Super res t r i c tedBy S l i c e I f c

{
/∗ c l a s s body ∗/

}

The given declaration constructs a fresh super-class for Role, an imaginary
class SuperSliceIfc, by extracting from Super only the slice of methods that
are mentioned in SliceIfc and extending this set to its transitive closure with
respect to self-calls (using this or super). Concerning the extends relation
between the classes Role and Super, SliceIfc is called the restricting interface.
This is the effect of restricted inheritance:

1. Internally, Role extends SuperSliceIfc.

2. Role is not a sub-type of Super, but only of SliceIfc (the imaginary
class SuperSliceIfc cannot be used explicitly).

3. Within inherited methods, this is internally re-typed to SuperSliceIfc.

Attributes are inherited without restrictions, since an attribute cannot leak
the this reference (we’ll come back to this later). By item (2), we disallow
explicit widening from Role to Super. Accordingly, (r instanceof Super)
yields false for any instance of Role.2

As a special case we support an interface org.objectteams.None, which is
(contrary to Java’s rules for interfaces) not a sub-type of Object. An interface
designed as restricting interface will usually extend None. Using None directly
as restricting interface we can construct role types with no usable super-type.
In that case, the strictest form of encapsulation is given without further efforts.

For all cases where SliceIfc is non-empty — for the effect that certain
methods of Super are available on Role instances — care must be taken that
these methods don’t compromise the desired encapsulation properties.

3.2.3 Concealment constraints.

The problem with inherited methods lies in the fact that they introduce implicit
widening of the this reference to the declaring type of the method. While the
intention of restricted inheritance is to disallow such widening the exception can
be made safe by requiring the slice of inherited methods to conceal the callee’s
identity. Any implementation of a method in the restricting interface (either
inherited or overridden in a role class) must be an anonymous method according
to [16].3 This means it may use the this and super references only for

2Only while executing a method from SuperSliceIfc, one might expect the type test to
yield true, but note, that this affects only the reference this. We don’t see reasonable use for
the idiom (this instanceof T). In order to avoid such confusion, the compiler should reject
this pathological situation and consistently treat Role instances as not of type Super.

3In the sequel we use the notion of anonymous methods, although we consider the word a
little misleading: a method may preserve the anonymity of the callee instance, i.e., anonymity
is a property of the object, whereas the method should preserve this property.

7

1. accessing fields,

2. calling other anonymous methods,

3. reference comparison.

Anonymity of called methods will be analyzed transitively, i.e., the transitive
closure SuperSliceIfc mentioned above must contain anonymous methods only.
However, only those methods explicitly mentioned in SliceIfc will be callable
on the sub-class.

In order to include constructors in these constraints, restricting interfaces
are allowed to mention constructors, too. Super-calls within methods and con-
structors of SuperSliceIfc are also taken into account for the transitive closure.
Within methods of Role, super may only be used to call methods that are
mentioned in SliceIfc. 4

Obviously, native methods are not allowed to be acquired using restricted
inheritance.

These rules ensure that methods inherited via restricted inheritance will not
reveal the object reference while viewing the object by the type of its super
class.

3.2.4 Confinement example.

By means of figures 2 and 3 we briefly demonstrate the Object Teams syntax
for confinement using an example from [16].

When evaluating line 7 in Fig. 2, the compiler checks the implementation
of class Random with respect to the given constructor and method nextDouble.
Both are required to be anonymous methods. By successful analysis, the in-
stance rnd (line 26) is guaranteed not to escape from the context of its owning
RSA instance.

Classes Key and PrivateKey have the same functionality but different visi-
bility/protection.

Class Secure.PrivateKey in Fig. 3, line 6, refines RSA.PrivateKey using
implicit inheritance. RSA.PrivateKey can still be widened to Object. The sub-
type relation is cut by the restricting interface IKey. Note, that in this case an
implicit inheritance is restricted, which is the only case of using restrictedBy
without extends. The same technique is used for class KeyFactory.

Recall that attributes are never restricted by a restricting interface, since
attribute access cannot reveal the this reference: The concealment rules prevent
storing this in an attribute in the first place.

Finally, a key-pair is created and initialized using the key factory. The public
key can be passed to other modules of the system, while the private key, the
key factory and its random generator are confined to their enclosing instance of
type Secure.

4We will discuss modular type checking in Sect. 3.6.

8

1 pub l i c team c l a s s RSA {
2 protected i n t e r f a ce IRandom extends None {
3 IRandom (long seed) ; // a constructor in an interface

4 double nextDoub le () ;
5 }
6 protected c l a s s ProtectedRandom
7 extends Random res t r i c tedBy IRandom
8 {
9 protected ProtectedRandom (long seed) {

10 super (seed) ; // super constructor is imported via IRandom

11 }
12 }

14 pub l i c c l a s s Key {
15 pub l i c BigDec imal mod ;
16 pub l i c BigDec imal exp ;
17 pub l i c S t r i n g c r y p t (S t r i n g msg) {
18 // encrypt msg using mod and exp.

19 }
20 }

22 // Pre-planning: some keys will be confined.

23 protected c l a s s Pr i va t eKey extends Key {}

25 pub l i c c l a s s KeyFactory {
26 pr i va te ProtectedRandom rnd =
27 new ProtectedRandom (System . c u r r e n tT im eM i l l i s ()) ;

29 protected void genKeyPai r (Key pub , P r i va t eKey p r i v)
30 {
31 // method nextDouble() is imported via IRandom:

32 double d = rnd . nextDoub le () ;
33 // use the random value to compute and set the key components.

34 }
35 }
36 }

Figure 2: A general key-pair infrastructure (RSA) in ObjectTeams/Java

3.3 Representation encapsulation

The previous section has demonstrated an extreme form of encapsulating role
objects by making those roles completely inaccessible from the outside. While
this is desirable for some security issues, other applications require a more prag-
matic approach. Work on modular reasoning suggests to define unique owner-
ship for representation objects while allowing other external objects to access
the representation as long as they are not allowed to modify representation
objects. A typical example is a class LinkedList which owns the nodes that
represent the list. Still an iterator should be given access to nodes in order to ef-

9

1 pub l i c team c l a s s Secure extends RSA {
2 protected i n t e r f a ce IKey extends None {
3 protected S t r i n g c r y p t (S t r i n g msg) ;
4 }
5 // IKey restricts the implicit inheritance from RSA.PrivateKey.

6 protected c l a s s Pr i va t eKey res t r i c tedBy IKey {}

8 protected i n t e r f a ce I F a c t o r y extends None {
9 protected void genKeyPai r (Key pub , P r i va t eKey p r i v)

;
10 }
11 protected c l a s s KeyFactory res t r i c tedBy I F a c t o r y {}

13 pr i va te Pr i va t eKey p r i v a t eKey ;
14 pub l i c Key pub l i cKey ;

16 pub l i c void t e s t () {
17 p r i v a t eKey = new Pr i va t eKey () ;
18 pub l i cKey = new Key () ;
19 KeyFactory keyFac to r y = new KeyFactory () ;
20 // method genKeyPair(..) is imported via IFactory:

21 keyFac to r y . genKeyPai r (pub l i cKey , p r i v a t eKey) ;
22 // use keys for encryption and decryption...

23 }
24 }

Figure 3: A refinement of the RSA Team

ficiently store its current position. In order to localize responsibility for the list’s
invariant in the LinkedList class, the iterator should not be allowed to modify
the state of any node objects. This level of protection is called representation
encapsulation.

Object Teams allow to define representation encapsulation by the techniques
of externalized roles and readonly interfaces.

3.3.1 Externalized roles.

If external objects shall have access to role instances, the type rules of family
polymorphism[3] require special considerations. In Object Teams the technique
of externalized roles ensures type safety of mutually recursive role types in con-
junction with Team inheritance. Externalized roles have been introduced in
[5, 6]. Outside the Team the type of an externalized role must be given as
teamInstance.RoleType, i.e., the role type is relative to the enclosing Team
instance (instance dependent types).

The syntax teamInstance.RoleType requires the role type to be declared
public. Note, that this also prohibits the case where a Team instance refers
to protected roles of another Team even of the same type. Instance dependent
types ensure instance based protection, which should be contrasted to Java’s
private modifier which defines a feature as local to its defining class not its

10

«team»
t: MyTeam

{protected}
r1: t.R1

Super

widening not allowed

reference not allowed

{public}
«readonly»

t.IR2
readonly reference{protected}

r2: t.R2

«restrictedBy»(Ifc)

Figure 4: Owned roles accessed via a readonly interface

containing object.
In order to combine alias control of protected roles (using restricted in-

heritance) with externalized roles, a role class declares to implement a public
interface. By this public interface the role is accessible from the outside. All
that is needed in order to ensure representation encapsulation is a guarantee
that no client may modify the role object via its public interface.

3.3.2 Readonly interfaces.

In ObjectTeams/Java an interface can be declared to be readonly. Such decla-
ration is an obligation for each implementing class, to ensure that all methods of
this interface are implemented as pure functional methods, i.e., methods without
side effect.

This obligation results in the following checks for each method under con-
sideration:

1. The method may not modify any fields of the current object.

2. Method calls to targets within the Team context may only use methods
that are subject to the same readonly restriction. The Team context is
defined as the enclosing Team instance and all its contained role instances
(of course including the current object).

The default super-type for readonly interfaces is None, the type without prop-
erties. If a readonly interface extends another interface, the methods from that
interface are included in the checks for readonly-ness. 5

Representation encapsulation is realized by two views on roles: (1) The
containing Team and its roles access the role by its exact type. This type
allows full access. Role protection and restricted inheritance make sure, that no
references by the exact role type or any un-protected super-type escape from
the Team context. (2) External clients view the role only by its public interface
which is declared as a readonly interface. The implementation of a role is
checked for compliance to the readonly declaration.

Fig. 4 extends Fig. 1 by a new interface t.IR2, which is annotated as
readonly. Using this interface external clients my refer to r2 but this reference
can only be used to call pure functional methods.

5We will discuss modular type checking in Sect. 3.6.

11

Note, that it is not a problem if the control flow of a readonly method leaves
and re-enters the Team context, since outside objects can only refer to roles via
their readonly interfaces. In other words, a readonly method does not prohibit
state changes of outside objects, but only of protected roles.

In general, Team classes are subject to the normal Java mechanism for vis-
ibility control. Since a readonly role method may call methods of its enclosing
Team instance, these Team-level methods need to be checked for readonly-ness,
too, i.e., the Team must also declare to implement some readonly interface.

If by means of Team-nesting a Team class Outer.Mid is also a role in an
even larger Team Outer, the readonly check for Outer.Mid concerns calls to the
following instances:

• contained roles Outer.Mid.Inner

• this (of type Outer.Mid)

• sibling roles Outer.Other

• the enclosing Team Outer

3.4 Example for representation encapsulation

Figures 5 and 6 show how the linked list example from [10] could be implemented
in ObjectTeams/Java.

In Fig. 5 three levels of encapsulation can be seen: lines 21–30 define the
public interface of a linked list. Lines 7–18 define a protected role class and
two variables of this type which cannot be accessed from the outside. Lines 2–5
define a public type for readonly access to the list’s nodes. The return statement
in line 21 uses widening from Node to INode in order to pass a protected role to
the outside.

The iterator class is shown in Fig. 6. Each iterator instance is immutably
tied to an instance of LinkedList (line 33). The variable theList is used as an
anchor for all occurrences of type INode (lines 34, 48), ensuring that only nodes
of this list will be handled by this iterator. Note, that this invariant is checked
by the compiler based on family polymorphism.

On any instance of INode the iterator may only access methods elem() and
next(). Removing the current node is supported by the Team-level method
void remove(INode n) (lines 30, 49). Inside this method, casting n from INode
to Node does not require runtime checks regarding the owner object, since this
is already covered by the static rules for externalized roles.

For the given implementation, static analysis proves that outside the Team
LinkedList any Node instance can only be accessed by the type INode, which
does not allow any modification of the call target. An iterator may share the
internal state with its associated list, but for any side effect on the list, it must
use the public Team interface. Analysis of any invariant of LinkedList can
thus be performed by only looking at this class and its contained elements.

3.5 Integrating existing classes

If we want to create a trivial variant of a non-role class such that its instances
can be protected by the Team, this can be done by defining a new role class,

12

1 pub l i c team c l a s s L i n k e d L i s t {
2 pub l i c readonly i n t e r f a ce INode {
3 INode next () ;
4 Object elem () ;
5 }

7 protected c l a s s Node implements INode {
8 protected Node ne x t ;
9 protected Object e l em ;

11 protected Node (Object e) { e l em = e ;}
12 protected void s e tNex t (Node n) { ne x t = n ;}

14 pub l i c INode next () { return ne x t ; }
15 pub l i c Object elem () { return e l em ; }
16 }

18 protected Node f i r s t , l a s t ;

21 pub l i c INode f i r s t () { return f i r s t ; }
22 pub l i c I t e r g e t I t e r () { return new I t e r (t h i s) ; }

25 pub l i c void add (Objec t o) {
26 Node n = new Node (o) ;
27 l a s t . s e tNex t (n) ;
28 l a s t = n ;
29 }
30 pub l i c void remove (INode n) { /∗ body om i t t e d ∗/ }
31 }

Figure 5: Class LinkedList in ObjectTeams/Java

which inherits from the given class (subject to a restricting interface). Also a
public readonly interface has to be defined which is implemented by the role
class. As an example consider the frequently quoted class Vector. This is how
a vector could be used as an encapsulated representation:

13

32 pub l i c c l a s s I t e r {
33 pr i va te f i n a l L i n k e d L i s t t h e L i s t ;
34 pr i va te t h e L i s t . INode p o s i t i o n ;

36 pub l i c I t e r (L i n k e d L i s t l) {
37 t h e L i s t = l ;
38 p o s i t i o n = t h e L i s t . f i r s t () ;
39 }

41 pub l i c Object nex t () {
42 Object r e s u l t = p o s i t i o n . elem () ;
43 p o s i t i o n = p o s i t i o n . nex t () ;
44 return r e s u l t ;
45 }

47 pub l i c void remove () {
48 t h e L i s t . INode pos = p o s i t i o n . nex t () ;
49 t h e L i s t . remove (p o s i t i o n) ;
50 p o s i t i o n = pos ;
51 }

53 }

Figure 6: An iterator of linked lists

pub l i c readonly i n t e r f a ce I V e c t o r {
pub l i c Object e lementAt (i n t i) ;
pub l i c i n t s i z e () ;
pub l i c I t e r a t o r i t e r a t o r () ;

}
team c l a s s T {

protected c l a s s PVector
extends Vector res t r i c tedBy ROVector
implements I V e c t o r

{ /∗ empty c l a s s body ∗/ }
}

Interfaces like IVector and ROVector (not shown here) could be automati-
cally derived from the library implementation and shipped as library enhance-
ments. We are currently discussing to include a special syntax restrictedBy *
in order to declare that all methods from a super-class are inherited and that all
these methods must obey the concealment constraints of anonymous methods.

3.6 Modular type checking

All checks regarding anonymous and readonly methods must be repeated for
each sub-class along both dimensions of inheritance (implicit and explicit).
Compiler messages must provide help for understanding the connection be-
tween an obligation due to restrictedBy or readonly declarations and the

14

implementation that has to comply to the obligation. We consider this tight
coupling along inheritance quite normal.

It is an advantage of the presented model that use relationships always de-
pend on declared interfaces only. As a result, the implementation of a Team
and its roles can be checked in a modular way, providing protection guarantees
with respect to all potential clients. Changing the implementation of a Team
without changing its interface will never affect the validity of any client.

3.7 Summary so far

Protected role types are not visible outside a Team instance. By restricting
inheritance, references to protected roles can be protected against escaping from
the enclosing Team context. The concealing property of inherited or overridden
methods is checked including transitive method calls.

The other extreme, a public role class, is only subject to the type rules
of family polymorphism, which prohibit to confuse role instances of different
Teams.

At a medium level of protection, a role class may, in addition to strict alias
control, provide a readonly view using a corresponding readonly interface. The
readonly property is checked for any control flow within the Team context.

All features can be freely combined, but only certain combinations succeed
in providing well-defined protection. The following will result in compile-time
warnings in order to alert the programmer of incomplete protection:

1. If a role class implements a readonly interface but extends a non-protected
class using unrestricted inheritance.

2. If a role with restricted inheritance implements a public interface that is
not readonly.

3. If a public role contains calls to update methods on protected roles.

In case (1), encapsulation is incomplete since a reference to the role may still
leak by widening, which could result in updates outside the Team-scope. Case
(2) would break ownership since an otherwise protected role could be accessed
globally by a read-write interface. Case (3) would allow a client to use an
externalized role in order to modify a protected role. This way, control flows
that do not originate in the Team could break a Team invariant which depends
on the state of a protected role. Still such control flow has to use a public
interface (in this case of the public role), which simply means, that a Team
shares responsibility for protected roles with all public roles it defines.

Without compile-time warnings these guarantees hold:

• A protected role class with restricted inheritance is owned by the enclosing
Team instance, i.e., only the Team and its roles are allowed to modify the
protected role. Any control flow that modifies an owned role must go
through a Team-level method.

• A protected role with restricted inheritance that does not implement any
public interfaces is confined, meaning that no reference to the role can
escape the enclosing Team instance.

15

4 Comparison

In this section we relate encapsulation in Object Teams to existing approaches
in order to demonstrate how we combine desirable properties without simply
adding up all the language constructs which they introduce. Also, by mapping
our concepts to those of existing approaches we reuse the work that has been
done regarding the soundness of the proposed model.

Please note, that we do not intend to introduce any new mechanism. Only
our restrictedBy keyword seems to be a new construct. It even reminds of
the separation between code reuse and sub-typing as it is realized in Sather
[15]. At a closer look, restricted inheritance is little more than a different style
of denoting the anonymity constraints known from confined types. We see our
contribution in the integration of existing techniques providing abstractions to
the programmer that follow a consistent style of annotating classes and interfaces
for controlling encapsulation.

4.1 Protection by Family Polymorphism

First of all, family polymorphism provides type safety in situations of covariant
refinement of a set of mutually-recursive classes. However, the consistency in-
variant of family polymorphism is stronger than simply avoiding “method not
understood” problems. By using outer instances instead of some exact–type
mechanism, family polymorphism defines groups of objects that may interact
with each other, whereas any member of a different group is considered incom-
patible.

This invariant may already be used to implement certain security constraints.
Consider an outer class User containing a class Key. Even if Key is public and
provides a public method void copyValues(Key other), this method cannot
be used to initialize the key of one user with the values of another user’s key,
since the parameter other must originate from the same outer instance as the
call target.

While this protection is still incomplete it provides a very useful basis for
implementing different styles of protection. The value of family polymorphism
for the issues at hand lies in the connection between instance based scoping and
static type analysis.

4.2 Strong Alias Control

Our restricting interfaces impose the same constraints on method implemen-
tations as the keyword anon in confined types. By separating declaration and
implementation, existing classes can easily be fitted into our model. The super
classes for protected roles need not contain the anon declarations but these are
given at the inheritance relationship.

Confined types need additional rules to prohibit widening from a confined
type to a non-confined type. In our model this follows naturally from restricted
inheritance which does not define a sub-type relation.

From confined types we adopt another rule: protected roles may not be
subtypes of Throwable and Thread.

The appendix lists the rules for confined types and how they are mapped in
our model.

16

Comparing the implementation of the RSA and Secure packages in [16] with
our version, we find indeed that by the use of virtual classes (here: implicit
inheritance) the synthetic interface KeyWriter is not needed any more. This
observation is in line with their assumption, that virtual classes might help to
achieve better designs with confined types.

4.3 Representation Encapsulation

Readonly references and readonly types follow the same goal. The most obvious
difference regards the propagation of the readonly property. In universes, read-
ing fields or invoking functional methods via a readonly reference yields again a
readonly reference. In Object Teams this needs no special mechanism, since a
public readonly interface can only mention public role types, which in the case
of protected roles will be their readonly interfaces.

Universes apply down-casts in order to convert a readonly reference back to
the unconstrained reference. The run-time checks for these down-casts involve
a comparison of owner objects, which fails if the cast happens in the wrong in-
stance scope. Also Object Teams require down-casts, but the ownership check
is performed statically using the instance dependent types of externalized roles.
As a result, a down-cast from a public role interface to its protected implemen-
tation will never fail at run-time due to a wrong owner.

Universes include explicit dependency control by also restricting outgoing
references. We only consider protection of roles in a Team. Thus, we allow
parts of the program to be unrestricted with respect to ownership, which seems
desirable for the purpose of incrementally introducing our mechanisms into tra-
ditional development.

Universes also have a potential problem with software evolution: if the im-
plementation of a method being used via a readonly reference is ever changed
to include a side effect, the new program is broken. In order to detect this sit-
uation the whole program needs to be analyzed, since all potential clients need
to be found and all method invocations analyzed with respect to side-effects
of the implementation. The ObjectTeams/Java compiler will easily detect this
situation, since the new implementation fails the explicit readonly obligation of
its readonly interface. This checking can be performed locally on the modified
Team only.

4.4 Classification

A classification for encapsulation techniques has been proposed in [11]. By
analyzing access graphs, they partition a system into the domains boundary
B, inside I, external references R and outside O. The partitioning function
is called the encapsulation function. Different encapsulation functions define
different encapsulation schemes enforcing different encapsulation constraints.

The encapsulation function for ObjectTeams/Java depends on which con-
structs are allowed in which combination. Only external references are not
dealt with explicitly in our model. In addition to the comparison given above,
the classification can for example be used, to show, that a Team containing no
public roles ensures external uniqueness[1] regarding its roles: the Team is the
only boundary object referring to a role.

17

5 Summary

We have presented, how different styles of alias control and encapsulation can be
integrated into a modern programming language that already features family
polymorphism. By the addition of only two new keywords — restrictedBy
and readonly — ObjectTeams/Java supports static analysis which can be used
to ensure different levels of protection. The integrated language involves three
concepts for encapsulation: instance dependent types, restricted inheritance
which separates method acquisition from sub-typing, and readonly interfaces.
The annotations used for specifying encapsulation are explicit at the level of
types (interfaces), rather than annotating specific references. This way, different
possibilities of access are directly visible when looking at a role class. This is
in contrast with approaches were any use-context of a given type may request
different access modes. If an existing class shall be used in a protected manner,
this can still be achieved by a sub-class which only alters the accessibility of the
class.

5.1 Future work

We will need to further investigate the relationship between encapsulation and
other concepts of Object Teams. In [6] we have given a first analysis of encap-
sulation in the presence of the role-base duality.

Based on the role-base relation, Object Teams support aspect oriented pro-
gramming using callin method bindings. As a first approximation callin-
bound methods need to be considered part of the public interface of the en-
closing Team. This is not surprising since the purpose of a Team with callin
bindings is to be invoked via these bindings at certain points of execution inside
the base application. Interestingly, callin bindings define control flows entering
a Team via a role without granting external access to the role. Leaking role ref-
erences out off a Team can be prevented by the lowering mechanism, whereby
any role instance leaving the scope of its Team is automatically translated to
the corresponding base instance [4].

However, these are only preliminary considerations, which need to be refined
in the future. We will hopefully show, how separating a conceptual entity into
a base instance and a set of roles, may in fact help to protect parts of an object
while sharing the basic concept.

The language ObjectTeams/Java is currently being evaluated with respect
to real world applicability within a project funded by the German research
ministry (BMBF). The case studies developed within that project will hopefully
give further insight also regarding the encapsulation properties described in this
paper.

Acknowledgements

The idea of combining Universes with Object Teams goes back to an inspiring
discussion with Arnd Poetzsch-Heffter. Special thanks go to Erik Ernst and
Rebekka Oeters, whose comments on early versions of this paper were of great
help regarding both the concepts and their presentation.

18

References

[1] D. Clarke and T. Wrigstrad. External uniqueness is unique enough. In Proc.
ECOOP 2003, number 2743 in LNCS, pages 176–200. Springer Verlag,
2003.

[2] D. Clarke (editor). Proc. International Workshop on Aliasing, Confinement
and Ownership in object-oriented programming (IWACO) at ECOOP 2003.
Technical Report UU-CS-2003-030, Utrecht University, 2003.

[3] Erik Ernst. Family polymorphism. In Proc. of ECOOP’01, number 2072
in LNCS, pages 303–326. Springer Verlag, 2001.

[4] S. Herrmann, C. Hundt, K. Mehner. Translation polymorphism in Object
Teams. Technical Report 2004/05, Fak.IV, Technical University Berlin,
2004.

[5] Stephan Herrmann. Object Teams: Improving modularity for crosscutting
collaborations. In M. Aksit, M. Mezini, and R. Unland, editors, Proc.
Net Object Days 2002, volume 2591 of Lecture Notes in Computer Science.
Springer, 2002.

[6] Stephan Herrmann. Sustainable architectures by combining flexibility and
strictness in Object Teams. IEE Software, to appear (Draft version avail-
able at: http://objectteams.org/publications/IEE-Software.ps).

[7] G. T. Leavens, A. L. Baker, and C. Ruby. Behavioral Specifications for
Businesses and Systems, chapter JML: A Notation for Detailed Design,,
pages 175–188. Kluwer Academic Publishers, 1999.

[8] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual
components. In Technical Report, Northeastern University, April 1999.

[9] Bertrand Meyer. Eiffel: The Language. Prentice Hall International, New
York, 1992.

[10] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and
dependency control. Technical Report 279, Fernuniversität Hagen, 2001.

[11] J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a
model of encapsulation. In Proc. IWACO ’03 [2].

[12] Object Teams home page. http://www.ObjectTeams.org.

[13] Rebekka Oeters. Formalisierung und Analyse eines Typsystems für
ObjectTeams/Java mit dem Beweiswerkzeug Isabelle (in german). Mas-
ter’s thesis, Technical University Berlin, 2003.

[14] Norbert Schirmer. Java definite assignment in Isabelle/HOL. In Proc. of
ECOOP Workshop on Formal Techniques for Java-like Programs, number
408 in Technical Report. ETH Zürich, 2003.

[15] C. Szyperski, S. Omohundro, and S. Murer. Engineering a programming
language — the type and class system of Sather. In Proc. International
Conference on Programming Languages and System Architectures, volume
782 of LNCS. Springer-Verlag, March 1994.

19

[16] J. Vitek and B. Bokowski. Confined types in Java. Software– Practice and
Experience, 31(6):507–532, 2001.

A Rules for Confined Types

This is how the rules for confined types[16] map to the type system of Object-
Teams/Java:

Confined Types Object Teams
C1 A confined class or interface must

not be declared public or protected,
and must not belong to the unnamed
global package.

A protected role is only visible within
its enclosing Team instance.

C2 Subtypes of a confined type must be
confined and belong to the same pack-
age as their confined super-type.

Explicit subtypes of protected roles
must be protected and belong to the
same Team as their protected super-
type. Protection must also be pre-
served along implicit inheritance.

C3 Widening of references from a con-
fined type to an unconfined type is
forbidden in . . .

With restricted inheritance a pro-
tected role is not a sub-type of the
class it extends.

C4 Methods invoked on a confined object
must either be defined in a confined
class or be anonymous methods.

Methods inherited with restriction
from a non-protected class to a pro-
tected role must be anonymous meth-
ods.

C5 The same for constructors
C6 Subtypes of java.lang.Throwable and java.lang.Thread may not be

confined/protected roles.
C7 The declared type of public and pro-

tected fields may not be confined.
The client interface of a Team may
not use a protected role type.

C8 The return type of public and pro-
tected methods may not be confined.

ditto

20

