
Programming with Roles in ObjectTeams/Java

Stephan Herrmann∗
Technische Universität Berlin

stephan@cs.tu-berlin.de

Abstract

A number of proposals exist how to support the concept of
roles at the level of programming languages. While some of
these proposals indeed exhibit very promising properties, the
concept of roles has not found its way into mainstream pro-
gramming languages. We argue that this is due to the rich-
ness of the concept of roles and the fact that each existing
proposal focusses on some aspects of roles while neglecting
others. We present the programming language ObjectTeams/-
Java and using the categories of (Steimann 2000) we demon-
strate that this language covers more aspects of roles than pre-
vious approaches. We suggest that a thoroughly defined pro-
gramming language featuring roles may contribute to a better
understanding also in other fields using roles.

Introduction
The concept of roles appears in a variety of research areas.
While the concept is widely accepted for conceptual mod-
eling, some other areas are more reluctant. This paper does
not argue for the benefit of using roles. Nor does it try to
define what roles are or give a comprehensive comparison
of existing approaches using roles. We will simply present
a programming language, ObjectTeams/Java, and relate this
language to previous work on roles.

In order to structure the discussion we will first present a
system of coordinates which allows to group the many prop-
erties that are ascribed to roles. We will then present Ob-
jectTeams/Java along those coordinates. When all relevant
features of the language have been presented we will apply
the criteria defined by (Steimann 2000) to ObjectTeams/-
Java, concluding a nearly complete coverage of all desirable
properties. We conclude with a discussion of related work.

With our presentation we try to convince the reader that
it is possible to define the concept of roles in a way that
is not only rigorous but also precise enough to give actual
implementations that directly exploit the concept of roles in
all phases of the software life-cycle. We hope that a clear
understanding of roles at the implementation level will also
help to eliminate the confusion that arises from different in-
terpretations of the concept of roles.

∗This work has been supported by the German Federal Ministry
for Education and Research under the grant 01ISC04A (TOPPrax).
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

System of coordinates for roles
(Steimann 2000) has presented a list of 15 features by which
roles have been characterized in different approaches. This
paper will investigate the concept of roles along a two-by-
four matrix, which can basically be seen as an abstractions
over Steimann’s 15 features.

On the one axis of our system of coordinates we distin-
guish astatic and adynamic view. Along the other axis we
will discuss the elements of relevance which are instances,
fields, methods and context.

Instances

No question regarding roles seems to be more controversial
than the issue of roles instances and their identity: are roles
distinguishable instances with unique identity or are a role
and its base the same object? For the larger part of this pa-
per we will simply assume that roles indeed have their own
identity, because for some desirable properties of roles we
see no viable solution without role instances. We will, how-
ever, come back to this issue at the end of our presentation
of ObjectTeams/Java where we try to show that it is actu-
ally a non-issue by discussing a solution which allows both
interpretations within the same model.

Static view. Assuming roles are instances which can be
referenced, a number of structural patterns becomes possible
which seem to be characteristic for roles. First of all, it is
always the roles which are attached to a base object. The
latter remains independent of any roles. For the separation
of concerns it is even crucial to be able to reason about base
objects while completely ignoring any roles.

It is a common understanding that a role is always the role
of exactly one base object. Looking the opposite direction
two kinds of multiplicities come into focus: several roles can
be attached to the same base object, namely several roles of
different role types as well as several instances of the same
role type.

Dynamic view. With roles being instances attached to a
base object it is possible that the life-cycle of a role differs
from the life-cycle of its base. A role may be attached to a
base object at any time during the base object’s life-cycle.
The same holds for removing a role from its base. In some
approaches it is even possible to keep unattached roles and

change the attachment by moving a role from one base ob-
ject to another.

In this context we should also look at how the relation be-
tween roles and bases is used for navigation between objects.
It is trivial to allow for navigation from a role to its base but
approaches may or may not provide means for navigating
from a base object to one of its roles.

Fields
In some applications of the concept of roles, significant fo-
cus lies on information modeling. For that reason it is crucial
to discuss how roles may contribute to the overall system
state.

Static view. The state of a role is usually defined by the
union of its direct fields and the fields of its base object. On
the one hand it is a central property of roles toshare the
state of their base object. On the other hand an object may
have a field only in the context where it plays a specific role.
Given the multiplicities discussed above an object may even
have different values for the same attribute in different con-
texts, where these values are actually stored as fields of the
respective roles. This replication of fields being (indirectly)
attached to the same base object is not possible without some
kind of role instantiation. Without role instantiation a base
object would have to grow indefinitely when an unbounded
number of roles is attached to it. Selecting between the dif-
ferent values for the same field would require some addi-
tional unique key. Since such keys are definitely needed, we
see no benefit in denying that these keys actually correspond
to an identity of each role instance.1

This point about multiplicities is crucial because legions
of researches still follow the dogma that role instances as
a special case of ”object schizophrenia” should simply be
avoided. For a large number of models such avoidance is a
blank ostrich approach.

Dynamic view. Fields of a role are visible only when
looking at the role, not at its base. Different concepts exist
for how a role may access the shared state of its base. In
those approaches where role and base form a close union
also base fields are accessed as if they where direct fields
of the role. In other approaches some forwarding may be
needed which would possibly involve one or more methods
encapsulating the field.

Methods
Since methods and fields together define the properties (fea-
tures) of an object, it should not surprise to see some com-
monalities between these two. However, methods need no
instantiation and on the other hand control flow comes into
focus here.

Static view. Much like fields a role may share methods
of its base object (as defined in the base object’s class). In-
stead of replication, methods with multiple definitions may

1One could still argue that the mentioned keys would be scoped
to the respective base object without the need to be globally unique,
but we see no fundamental gain in such distinction.

override each other, the semantics of which requires a look
at the runtime behavior, ie., the dynamic view.

Dynamic view. Dynamic method dispatch is maybe the
central runtime mechanism of object-oriented programming
languages. Role objects introduce some more options to
method dispatch.2

Most commonly, sharing the behavior of its base is imple-
mented as forwarding method calls from a role object to its
base. Such dispatch may or may not apply true delegation
with late binding of self. This stronger form of delegation is
used to define object-based inheritance which has basically
the same power as ordinary class-base inheritance3. By con-
trast, the weaker forwarding forgets about the initial call tar-
get (the role) and does not allow methods of the parent object
(here: base object) to be overridden by methods of the child
(here: role).

A third concept may also be used for method dispatch:
method call interception. By this technique, the control flow
can be redirected from the original call target to some other
instance. Redirecting a call to a base method as to invoke a
role method instead has mainly the same effect as overriding
in the context of object-based inheritance.

Such issues of dispatching are fundamental when design-
ing programming language support for roles. For more ab-
stract models it might be less important, but it is still impor-
tant to note that a role may exhibit behavior that is similar to
that of its base but with certain well-defined differences con-
cerning additional methods and methods that are overridden
in the role.

Context
At the conceptual level, roles are frequently defined as
named places in a relationship or the like4. In other words,
roles define the intersection of objects and contexts, such
that different contexts select different roles.

Static view. A context groups a set of roles assigning a
specific place to each of its roles. Such grouping creates a
containment relation between the context and its contained
roles.

While some approaches consider this a central property
of roles to be defined only in relation to something, pro-
gramming languages supporting roles commonly ignore this
issue.

Dynamic view. Usually a role cannot migrate from one
context to another, because it is the context that defines the
role. However, entering and leaving a context is an indis-
pensable concept with regard to roles.

The effect of entering a context can be described as some
kind of activation. Only roles of a currently active context
will ever be relevant for the execution of a program. There
may be different ways of entering or activating a context.

2(Kappel, Retschitzegger, & Schwinger 1998) identify signifi-
cant differences among proposed role languages regarding method
dispatch.

3See (Stein, Lieberman, & Ungar 1989) and our discussion of
related work.

4See, e.g., (Steimann 2000).

ATeam

ARole

teamField
teamMethod()

ABase
«playedBy»

1

1*

Figure 1: Basic structure of role, team and base.

Roles in ObjectTeams/Java
In this section we will present how roles are realized in
the programming language ObjectTeams/Java (Herrmann
2002b; ObjectTeams). The language combines concepts
from different research areas. It is mostly discussed
in the context of Aspect Oriented Programming. Also
collaboration-based design has strongly influenced the lan-
guage design. Collaborations are modeled using a new kind
of class-like module calledteam, hence the name Object
Teams. ObjectTeams/Java is the incarnation of this program-
ming model for the host language Java.

The presentation of roles in ObjectTeams/Java (OT/J for
short) will follow the two by four system of coordinates
given above. While we walk through the matrix we will
show how the properties of roles captured in the matrix
are mapped to constructs of OT/J. We invite the interested
reader to relate to the comprehensive language definition
for the precise definition of all constructs mentioned in this
paper (Herrmann & Hundt 2002 2005). For easier refer-
ence we add links to the specific paragraphs of the OTJLD
(short for ObjectTeams/Java Language Definition). General
introductions to OT/J can be found in (Herrmann 2002b;
Veit & Herrmann 2003). Specific concepts and mechanisms
are explained more in depth in (Herrmann 2004a; 2004b;
Herrmannet al. 2005). The focus of this paper lies on as-
sessing the suitability of OT/J for implementing role-based
models.

Role Instances
The primary decision in the design of the programming
language ObjectTeams/Java is to model roles by specific
classes and to define aplayedBy relationship at the class
level which specifies that each instance of the bound role
class will be constantly attached to a given base instance
(OTJLD§2.1):

class MyRole playedBy MyBase ...

Static view. A playedBy declaration by itself results
only in an invariant that is enforced for all instances of the
role class: each instance will at creation time be attached to
a base object of the declared type. This link is immutable
throughout the life-cycle of the role object. This restriction
is due to the fact that a base object may contribute essential
properties to its role. In this setting an unattached role would
break the type system resulting in an object that lacks some
features which its type promises.

ATeam

ARole ABase
lowering

lifting

Figure 2: Two directions of navigation.

In order to enforce this invariant the role–base link is com-
pletely hidden. By this regime no client code may ever tem-
per with the base link. However, a number of language fea-
tures, to be introduced below, is implicitly founded on the
base link.

Statically, roles in ObjectTeams/Java allow any pattern of
multiplicity discussed above.

In ObjectTeams/Java we furthermore distinguish between
unboundandboundroles, where onlyboundroles, which
have aplayedBy clause, strictly conform to the prevailing
notion of roles. An unbound role willneverbe attached to a
base object. Still there is a number of properties that bound
and unbound roles share(OTJLD§1.2). A bound role may
inherit from an unbound role. Along role inheritance the
playedBy -clause can be refined to a more specific base
class(OTJLD§2.1(c)).

Dynamic view. We have already discussed the restriction
regarding the immutable base link. Looking however from
the base object, full dynamism is granted as roles may be
attached and removed from the base any time. Removing a
role obviously also means to destroy it.

Navigation from a role to its base is trivial as mentioned
before. However, ObjectTeams/Java adds a novel mecha-
nism for navigating the opposite direction: from a base ob-
ject to its role. This mechanism is calledlifting (OTJLD§2.3).

The idea behind lifting is as follows: Whenever a base in-
stance enters the context of a team instance (a role context,
see section ”Context”) below), it is translated by the lift-
ing mechanism to the corresponding role. Technically, each
team maintains a mapping from base objects to role objects,
such that a role of a given type is identified by the pair of
a base and a team object. Opposite, whenever a role object
shall leave the context of its enclosing team, it is translated
by lowering to the base object it is attached to. Lowering is
the inverse of lifting. It is implemented by simply navigating
the base link(OTJLD§2.2).

The language is designed in such a way, that the
compiler can determine which points in the execution
of a program cause a data-flow across a team boundary
(OTJLD§2.3(b), §2.2(b)). These data-flows apply lifting and
lowering as needed to adapt types, with the desirable effect
that the team context can be implemented fully in terms of
its roles, whereas the world outside a team should usually
not explicitly refer to any role.

For an illustration of lifting we briefly present the only
piece of syntax by which lifting can be made explicit if ac-
tually needed. The syntax ofdeclared lifting(OTJLD§2.3.2)
allows the programmer to give explicit hints regarding the

desired lifting. The syntax allows to specify two different
types for a method argument:

void workOnRole(ABase as ARole roleArg) {..}

The effect of such signature is that a caller has to provide
a base instance (here of typeABase). Before the method
body is executed, however, the base instance is lifted to the
specified role type (hereARole). For this declaration to be
legal,workOnRole must be defined as a method of a team
(see section ”Context” below) which contains the role class
ARole , which in turn must declare to be played byABase.
Technically, lifting is a function

teamInst× baseInst× roleType→ roleInst

For reasons of similarities to subtype-polymorphism the
concept of translations using lifting/lowering is calledtrans-
lation polymorphism(Herrmann 2004b). It actually defines
a new kind of substitutability based on wrapping/unwrap-
ping objects.

Fields

A role class may declare fields just like regular classes.
Namespaces of a role and its base are disjoint.

Static view. Fields declared in a role class are of course
allocated for each role instance. Base fields are only shared
if specifically declared. The exact construct for accessing
base fields will be shown next.

Dynamic view. In order to access a field of its base ob-
ject, a role must declare an indirection, as in(OTJLD§3.5):

String getName()→ get String name;

Such a declaration in a bound role class grants read access
to a field calledname which is assumed to be defined in the
base class. The above declaration implicitly defines a role
methodgetName . Using the modifierset insteadget
and declaring an appropriate method signature will in anal-
ogy grant write access. Any such field access from a role to
its base need not pay attention to access restriction as defined
in the base class(OTJLD§3.5(e), §3.4).

Forwarding a field access from a role to its base is a spe-
cial case of so-calledcallout bindings to be defined be-
low.

Methods

A role class may declare methods just like regular classes.
Again, namespaces of a role and its base are disjoint.

Static view. A role may selectively share methods from
its base and it may also override base methods. Any base
method that is not explicitly shared is not visible for the role.
Understanding the mechanisms behind sharing and overrid-
ing requires a look into the dynamic method dispatch.

Dynamic view. When a role class declares to share
a method of its base class this technically boils down to
methodforwarding along thebase link. Such forwarding
is established by a declarative method binding(OTJLD§3):

ATeam

ARole ABase

rm1()
rm2()

bm1()
bm2()

callout

callin

Figure 3: Two kinds of method binding.

requiredRoleMethod→ existingBaseMethod

Object Teams features method bindings in two directions.
The forwarding from a role to its base is called acallout
binding. Just like in theplayedBy clause, names of the
role always appear at the left-hand side whereas names of
the base are at the right-hand side.

Callout bindings may have different levels of detail. In
any case the base method may be made available be a new
name. Signatures may need to be given, and parameters can
even be mapped(OTJLD§3.2) in order to mend little incom-
patibilities between the base-implementation and how this is
to be seen in the team context.

Forwarding as established by a callout binding can be
seen as lowering the call target. Similarly, method ar-
guments may also need to be lowered during forwarding
caused by a callout binding(OTJLD§3.3).

The point in declaring callout bindings is to establish
a selective object-based inheritance relation. Each feature
mapped in a callout binding is shared between base and role.
Unmapped features are invisible at the role.

The careful reader might ask, whether a callout binding
establishes simpleforwardingor delegationwith late bind-
ing of this , as it would be required for true object-based
inheritance. The answer is that a callout binding by itself
indeed causes simple forwarding. This has the effect, that
during the execution of the base method no information is
available that the method is being executed on behalf of a
role. Therefor, any self-call within this method will stay at
the base object. Object-based inheritance, on the other hand,
allows the role to override methods of its base.

In ObjectTeams/Java forwarding and overriding are
decoupled. It is the second binding direction by which
method overriding can be specified. Acallin method
binding (OTJLD§4)

overridingRoleMethod← replace someBaseMethod

has the effect, that calls tosomeBaseMethod
will be redirected to the role invoking its method
overridingRoleMethod 5. The redirection caused by
a callin binding involves lifting of the call target (to lookup
the base object’s role) and also of method arguments if
needed.

5Following the tradition of aspect-oriented programming also
before andafter modes are available

Similar to method overriding with regular inheritance the
previous version can be invoked, withbase instead of
super which forwards back to the original call target, the
base instance. Note that the symmetry of lifting and lower-
ing hides the fact that a message is being dispatched between
different instances. Role and base behave as two sides of the
same coin.

Summarizing the role-base relation, it can be described
as a tunable object-based inheritance relation. It supports
sharing (callout bindings), overriding (callin bindings) and
substitutability (translation polymorphism).

Teams as Context for Roles
A central contribution of ObjectTeams/Java is the capabil-
ity to group a number of roles into what we call ateam.
Teams combine the concepts of classes and packages: They
are classes in that they have fields and methods, may apply
inheritance6 and are instantiable. They are packages in that
they contain a set of classes. While this class containment
is very similar to inner classes in Java, we also provide the
option to store the inner classes in a directory representing
the team(OTJLD§1.2.5), which emphasizes the package-face
of teams. Visibility of methods and fields may use a team as
a namespace to control encapsulation: private features are
visible in their enclosing class only, protected features can
be accessed by a team and all its roles, only public features
can be seen from outside the team(OTJLD§1.2.1(e)).7

A team is declared as a class with the modifierteam :

public team class MyTeam ...

Any inner class of a team is automatically (ie., without an
additional modifier) a role class.

Static view. Teams introduce another invariant (this prop-
erty is directly adopted from Java inner classes): each role
instance is contained in a team instance. The role refers to
the enclosing team instance by a non-null immutable link.
Being an object, too, a team instance may also hold explicit
links to contained role objects. Rules for good design us-
ing Object Teams mandate the use of teams for a variety of
reasons, some of which refer to existing design patterns:

• A team may model a relationship where the roles are the
places in this relationship.

• A team may be a Mediator coordinating the collaboration
of its roles.

• A team may be a Façade providing an interface for a set
of roles which are not visible at the outside.

• A team may be a module for a scenario.

6Team inheritance applies the concept offamily polymorphism
(Ernst 2001) to allow for type safe covariant refinement of a set of
role classes. This concept is essential in the design of OT/J but it
falls beyond the subject of this paper.

7Visibility deviates from the rules of inner classes in Java. In
Java private members of a inner class are visible for the enclosing
class, too. However, when regarding a team as a package, it must
be possible to protect features of a role against access even by the
containing module.

ObjectTeams/Java even provides means to enforce a strict
discipline of encapsulation, which prevents that aconfined
role will ever escape the context of its enclosing team in-
stance(OTJLD§7) (Herrmann 2004a).

Dynamic view. The discussion of lifting has focussed on
data flows across a team boundary. The dynamic view on
team contexts suggests a closer look at control flows across
this boundary. Two styles of entering and leaving the context
of a team can be distinguished:

• Whenever the control flow enters a team due to a call to
a team-level method, this team object is active until the
method terminates(OTJLD§5.3).

• Additional means exist to imperatively activate any num-
ber of team objects(OTJLD§5.2).

The effect of activating a team object is that all callin-
bindings defined in either of its roles are enabled. Invoking
a base method for which a callin binding exists while an ap-
propriate team object is active has the effect of intercepting
the method call and redirecting the control flow to a role
within the active team.8

As we already discussed also data flows are effected by
entering/leaving a team context: passing a base object into
a team causes the base to be translated to (wrapped with) an
appropriate role, passing a role object out of a team causes it
to be lowered. If a base object is lifted for which no role ob-
ject exists at that point in time a role is implicitly created on-
demand. This process can be fine-tuned by so-calledguard
predicates(OTJLD§5.4) (Herrmannet al. 2005). Guards can
be defined at several locations within role or team classes.
They can be used to filter which calls to base methods should
actually be intercepted due to callin bindings. A guard can
also be used to prevent on-demand creation of a role. Here is
an extract from an example used in (Herrmannet al. 2005)9:

publ ic team class ATM {
Bank bank ;
. . .
/ / This role applies to all accounts that
/ / are not from the same bank as the ATM.
publ ic class ForeignAccount

playedBy Account
base when (! (bank . equals (base . getBank ())

{
debi tWithFee <− replace d eb i t ;
checkedGetBalance <− replace getBalance ;
. . .

}
}

The policy of implicit team activation ensures that callout-
defined forwarding only happens while the team containing
the role is active. Therefor all callin bindings of the role are
effective while the base method is executing. The desired
behavior of overriding is established.

Imperative team activation adds another option. Even
when a method of a base object is invoked by a client which

8If more than one such team is active simultaneously, priority
is determined mainly by the order of activation (OTJLD§5.1, §4.8).

9The guard is given in the line starting withbase when .

is unaware of any roles there may be a role in a currently
active team which may influence the behavior of the base
object. Deactivating the team restores the original behavior.
This policy goes beyond traditional approaches to object-
based inheritance. Those approaches apply overriding only
when a method is explicitly invoked on a role instance. In
our opinion it is very desirable to be able to express that a
role by its mere existence changes the behavior of the base
to which it is attached, even for clients which are unaware
of the role. Team activation and callin bindings can easily
achieve this.

Postlude: why identity is a non-issue

Technically, roles in ObjectTeams/Java are distinguishable
instances. The== operator will answer false when com-
paring a role and its base. Conceptually, we still think of a
role–base pair as one entity. The automatic translation by
lifting/lowering effectively supports this conceptual unity.
In day-to-day programming with ObjectTeams/Java we have
not yet come to a situation, where it was actually relevant to
check for the identity of a role and its base, and where this
check should indeed answer true. However, the easiest of
all solutions to the seeming dilemma (see our previous dis-
cussion) has already been given by (Richardson & Schwarz
1991): we only need to define two separate operators:==
will continue to distinguish a role from its base whereas
a second operator (in (Richardson & Schwarz 1991)@=is
used) considers all roles as identical to their base. In Ob-
jectTeams/Java we refrained from adding a new operator but
simply prefer a predefined methodroleEQ .

Of course lifting and lowering greatly help to avoid the
comparison of identity of roles and bases: within the team
everything can be expressed using roles only, outside the
team roles should be avoided alltogether.

Applying Steimann’s criteria
In this section we iterate through the list of features given in
(Steimann 2000). For each item we will briefly demonstrate
how it is supported in ObjectTeams/Java.

(1) A role comes with its own properties and behavior.
Role classes may declare fields and define methods.

(2) Roles depend on relationships.In a good design us-
ing ObjectTeams/Java, a team will model one or more rela-
tionships, with its roles being the places in the relationship.
Roles indeed depend on their enclosing team instance.

(3) An object may play different roles simultaneously.A
base object may have roles in different teams. It may also
have several different roles within the same team, which is
only subject to certain strutural restrictions which are needed
to keep the type-system sound.

(4) An object may play the same role several times, simul-
taneously.For the same base object and the same role type,
roles can still be distinguished if they live in different team
instances.

(5) An object may acquire and abandon roles dynami-
cally. Being separate instances, it is no problem to create/de-
stroy roles independently of their base. Roles may come

T1

Base1

Base2

Role1

Role2

SuperRole

«playedBy»

«playedBy»

no common
super-type

Figure 4: Mapping one role to several unrelated base classes.

into being either by explicit creation or by an implicit lift-
ing translation. Lifting can be further controlled by guard
predicates.

(6) The sequence in which roles may be acquired and
relinquished can be subject to restrictions.Interestingly,
Steimann’s example (Steimann 2000) to this item illustrates
a dependency of a role requiring another role as its base (see
item (8)). Role guards can in fact impose arbitrary con-
straints on the automatic instantiation of a role. Callin bind-
ings can be used to trigger the acquisition of a role.

(7) Objects of unrelated types can play the same role.Al-
though not supported by a specific language construct, this
features falls off easily using an unbound role and several
sub-classes (roles) which are bound to different base classes
(see Fig. 4). This pattern allows all roles to share some im-
plementation from the unbound role and also adaptations to
different base classes can be achieved by different callout
mappings in the sub-classes. Another interpretation of this
pattern is, that the unbound role introduces an a-posteriori
super-type over (views of) a set of base classes.

(8) Roles can play roles.Since roles are instantiable, it is
not a problem to attach one role to another. Typing such con-
structs is, however, not trivial. In ObjectTeams/Java a role
and its base may not be contained in the same team instance.
Practical use of ObjectTeams/Java has shown, that indeed
very nice layered structures can be realized using roles-of-
roles.

In (Herrmann 2003) we have presented three general pat-
terns of composing systems from roles and teams, like, e.g.,
team nesting, where a team is again a role of an even larger
team.

(9) A role can be transferred from one object to another.
To-date, ObjectTeams/Java does not support this feature.
Typesafety will never allow a role instance, whose class de-
clares aplayedBy relation, to exist without a validbase
link. Transferring a role from one base to another could
easily be achieved by an additional API-function. We just
haven’t seen the need for this, yet.

(10) The state of an object can be role-specific.Indeed,
being an instance, each role may carry specific state.

(11)Features of an object can be role-specific.Fields and
methods can be defined in role classes just like in any class.
In (Steimann 2000) the explanation of this item mentions
multiple overloading of the same feature. ObjectTeams/Java
supports overloading, renaming and overriding.

(12) Roles restrict access.All base features not bound by
a callout binding remain invisible.

(13) Different roles may share structure and behavior.
Features are selectively shared using callout bindings.

(14) An object and its roles share identity. Using
roleEQ comparison a role and its base appear as having
one shared identity. Translation polymorphism establishes
substitutability between a role and its base.

(15) An object and its roles have different identities.Us-
ing the== operator the identity of roles can indeed be dis-
tinguished from each other an from their base.

Evaluation
From applying the 15 features we conclude that Object-
Teams/Java fully supports all desirable properties of roles.
Some features might not be supported by specific declara-
tive constructs, but rather need a little explicit programming.
Most notably, item 6 (sequence) could of course be sup-
ported by a much more specific sub-language such as regular
expressions. However, having guard predicates in the lan-
guage is already a great help for this task and we would con-
sider more specific support for this item as undue language
bloat. ObjectTeams/Java even supports features which were
said to be contradictory.

Related work
Programming language support for roles can be traced back
all the way to SELF (Ungar & Smith 1987) which demon-
strated the universal applicability of object-based inheri-
tance paving the road for the Treaty of Orlando (Stein,
Lieberman, & Ungar 1989).

ASPECTS (Richardson & Schwarz 1991) already comes
quite close to our understanding of roles. More recently,
three branches of research can be identified, which put basic
mechanisms for roles into a broader context.

For the development of ObjectTeams/Java, Aspectual
Components (Lieberherr, Lorenz, & Mezini 1999) were a
major source of inspiration. In this branch Dynamic View
Connectors (Herrmann & Mezini 2000) uses the techniques
for component integration and the language prototype Lua
Aspect Components (LAC (Herrmann & Mezini 2001)) di-
rectly paved the road for ObjectTeams/Java. More recently,
Caesar (Mezini & Ostermann 2003) can also be seen as a
successor of Aspectual Components and also shows some
features which have been introduced in ObjectTeams/Java.
Caesar, however, leaves more of the infrastructure code to
be written explicitly by the programmer. E.g., the base link
is a plain reference to be used directly in client programs.

On a different branch, LasagneJ (Truyen 2004) has devel-
oped similar technology for the purpose of supporting mul-
tiple client-specific contexts in distributed systems.

Finally, the Chameleon model (Graversen 2004) follows
the tradition of (Kristensen & Østerbye 1996).

Despite their different roots these four branches have
come to very similar results. In all these approaches, roles
(or wrappers) are grouped into larger modules, which seems
to be the major advance over earlier models like (Richard-
son & Schwarz 1991). However, a systematic comparison
among these branches has not yet been given.

Newer approaches which also combine roles with explicit
context are powerJava (Baldoni, Boella, & van der Torre
2005) and EpsilonJ (Tamai, Ubayashi, & Ichiyama 2005).
Most of the concepts of these surprisingly similar languages
can easily be mapped to corresponding concepts in OT/J. In
both languages the issues of role attachment and the base-
to-role navigation are handled explicitly in the source code.
Most of this is subsumed in our concept of lifting. Through
the mostly implicit nature of lifting we achieve a better sep-
aration between the worlds of roles and base objects. Both
mentioned languages lack the concept of persistently acti-
vating a context.

In this paper we have related ObjectTeams/Java to the
general concept of roles as classified in (Steimann 2000).
Our analysis has shown, that ObjectTeams/Java fulfills most
of the requirements for roles, to an extent that, to the best
of our knowledge, has not been demonstrated for any other
approach, yet.

Current state and future work
The design of the language ObjectTeams/Java is mostly
complete. A final step in language design will be the in-
tegration of a sub-language for selectingjoin pointsfor as-
pect integration. Note, that callin bindings already provide
a basic mechanism for aspect-oriented programming in Ob-
jectTeams/Java.

The second-generation compiler for ObjectTeams/Java is
based on the Eclipse Java Development Tooling. Eclipse
has been extended in many ways to effectively support the
development of software using ObjectTeams/Java. This IDE
is freely available (ObjectTeams) and we are currently per-
forming an industrial case study for empirically evaluating
the benefit of using ObjectTeams/Java for software devel-
opment. Class-room use, diploma theses and early results
from the case study give rise to confidence in ObjectTeam-
s/Java being a sound approach that actually supports im-
proved modularity and a very good alignment from con-
ceptual modeling to an implementation using the very same
concepts.

Design notations for Object Teams have been discussed
(Herrmann 2002a; Herrmann, Hundt, & Mehner 2004) and
tool support using UML profiles and code generation is un-
der way. In our research we mainly follow a bottom-up ap-
proach. We hope that providing a programming language,
whose technical details have been settled over the last years,
provides a solid foundation for developing a comprehensive
method for seamless software development using not only
objects but also roles and collaborations as first-class con-
cepts throughout the software life-cycle. Most of the suc-
cess of object-orientation is due to an improved seamless-
ness over earlier paradigms. We are convinced that Object
Teams have the potential of taking seamlessness one step
further and that software developed in the new approach may
exhibit better modularity and also traceability from require-
ments to code.

References
2002. Proc. of First International Conference on Aspect
Oriented Software Development, Enschede, Netherlands:
ACM Press.

2003. Proc. of 2nd International Conference on As-
pect Oriented Software Development, Boston, USA: ACM
Press.

Baldoni, M.; Boella, G.; and van der Torre, L. 2005. Roles
as a coordination construct: introducing powerjava. InPro-
ceedings of MTCoord05.

Ernst, E. 2001. Family polymorphism. InProc. of
ECOOP’01, number 2072 in LNCS, 303–326. Springer
Verlag.

Graversen, K. 2004. Role collaborations. InWorkshop on
Software-Engineering Properties of Languages for Aspect
Technologies (SPLAT) at AOSD’04.

Herrmann, S., and Hundt, C. 2002–2005. Object-
Teams/Java Language Definition version 0.8 (OTJLD).
http://www.ObjectTeams.org/def/0.8/.

Herrmann, S., and Mezini, M. 2000. PIROL: A case
study for multidimensional separation of concerns in soft-
ware engineering environments. InProc. of OOPSLA 2000.
ACM.

Herrmann, S., and Mezini, M. 2001. Combining compo-
sition styles in the evolvable language LAC. InProc. of
ASoC workshop at the 23nd ICSE.

Herrmann, S.; Hundt, C.; Mehner, K.; and Wloka, J. 2005.
Using guard predicates for generalized control of aspect
instantiation and activation. InDynamic Aspects Workshop
(DAW’05), at AOSD 2005.

Herrmann, S.; Hundt, C.; and Mehner, K. 2004. Mapping
use case level aspects to objectteams/java. InWorkshop on
Early Aspects at OOPSLA’04.

Herrmann, S. 2002a. Composable designs with UFA.
In Workshop on Aspect-Oriented Modeling with UML at
(AOSD’02 2002).

Herrmann, S. 2002b. Object Teams: Improving modularity
for crosscutting collaborations. In Aksit, M.; Mezini, M.;
and Unland, R., eds.,Proc. Net Object Days 2002, volume
2591 ofLecture Notes in Computer Science. Springer.

Herrmann, S. 2003. Orthogonality in language design –
why and how to fake it. InWorkshop on Object-oriented
Language Engineering for the Post-Java Era, at ECOOP.

Herrmann, S. 2004a. Confinement and representation en-
capsulation in object teams. Technical Report 2004/06,
Technical University Berlin.

Herrmann, S. 2004b. Translation polymorphism in Object
Teams. Technical Report 2004/05, Technical University
Berlin.

Kappel, G.; Retschitzegger, W.; and Schwinger, W. 1998.
A comparison of role mechanisms in object-oriented mod-
eling. In K. Pohl, A. Scḧurr, G. V., ed.,Proceedings Mod-
ellierung’98, 105–109.

Kristensen, B., and Østerbye, K. 1996. Roles: Conceptual

abstraction theory and practical language issues.Theory
and Practice of Object Systems2(3):143–160.
Lieberherr, K.; Lorenz, D.; and Mezini, M. 1999. Program-
ming with aspectual components. InTechnical Report.
Mezini, M., and Ostermann, K. 2003. Conquering aspects
with caesar. In AOSD’03 (2003).
Object Teams home page. http://www.ObjectTeams.org.
Richardson, J., and Schwarz, P. 1991. Aspects: extending
objects to support multiple, independent roles. InProceed-
ings of the 1991 ACM SIGMOD international conference
on management of data.
Steimann, F. 2000. On the representation of roles in object-
oriented and conceptual modelling.Data and Knowledge
Engineering.
Stein, L. A.; Lieberman, H.; and Ungar, D. 1989. A
shared view of sharing: The Treaty of Orlando. In Kim,
W., and Lochovsky, F. H., eds.,Object-Oriented Concepts,
Databases and Applications. Reading (MA), USA: ACM
Press/Addison-Wesley. 31–48.
Tamai, T.; Ubayashi, N.; and Ichiyama, R. 2005. An
adaptive object model with dynamic role binding. In
Proc. International Conference on Software Engineering
(ICSE2005), 166–175.
Truyen, E. 2004.Dynamic and context-sensitive composi-
tion in distributed systems. Ph.D. Dissertation, Katholieke
Universiteit Leuven.
Ungar, D., and Smith, R. B. 1987. Self: The power of
simplicity. In Proc. of OOPSLA’87.
Veit, M., and Herrmann, S. 2003. Model-view-controller
and object teams: A perfect match of paradigms. In
AOSD’03 (2003).

