
PIROL: A Case Study for Multidimensional Separation of
Concerns in Software Engineering Environments

Stephan Herrmann
Technical University Berlin
D-10587 Berlin, Germany

stephan@cs.tu-berlin.de

Mira Mezini
Darmstadt University of Technology

D-64283 Darmstadt, Germany

mezini@informatik.tu-darmstadt.de

ABSTRACT
In this paper, we present our experience with applying mul-
tidimensional separation of concerns to a software engineer-
ing environment. By comparing two different designs of our
system, we show the importance of separating integration
issues from the implementation of the individual concerns.
We present a model in which integration issues are encapsu-
lated into first–class connector objects and indicate how this
facilitates the understandability, maintenance and evolution
of the system. We identify issues of binding time, binding
granularity and binding cardinality as important criteria in
selecting an appropriate model for separation of concerns.
We finally show how a good choice following these criteria
and considering the requirements of software engineering en-
vironments leads to a system with dynamic configurability,
high–level component integration and support for multiple
instantiable views.

Keywords
Separation of concerns, software engineering environment,
domain–specific language, component integration.

INTRODUCTION
The principle of separation of concerns [7 36] has made its
way into all modern software formalisms, bringing about
many different concepts for breaking a system into parts,
with the object concept being the most recent one. In
the last decade, a “post–objective” era has emerged rep-
resented by role and collaboration based designs [39 18 46
51], reflective architectures [25 21 26 27], and more recent
approaches such as aspect oriented programming [22], pro-
gramming with reusable collaborations [28], and the multi-
dimensional separation of concerns model [49]. The main
message of this “post–objective” era [15] is that (a) exist-
ing software formalisms support separation of concerns only
along a “predominant dimension” (e.g., the data type axis in
object–oriented languages as opposed to functions in proce-
dural programming) while neglecting other dimensions, (b)

– Pre-print –To appear in proceedings of OOPSLA 2000
c©ACM, 2000. Permission to make digital or hard copies of part

or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or fee.

focusing on only one dimension causes the definitions of con-
cerns in other dimensions to be tangled with the definition
of the concerns in the main dimension with negative effects
on reusability, locality of changes, understandability, hence
maintenance, and (c) the principle of separation of concerns
becomes really effective when it is simultaneously supported
along multiple dimensions, with concerns in different dimen-
sions overlapping each other.

While the idea of multidimensional separation of concerns
(MDSOC) is more than intuitive, and programming models
for supporting it are emerging [22 28 49], an investigation
of the design space of such models is still missing, partly
due to the lack of experience reports on applying MDSOC
to the construction of moderately sized software. In this
paper, we make a modest effort to fill this gap by reporting
our experience with applying the principle of MDSOC to
a real software engineering environment (SEE). SEEs are
integrated environments consisting of a collection of software
engineering tools that work together, freeing the user from
the need of manual coordination [48]. Hence, although our
case study is an SEE, the results of the work presented here
apply to any integrated environment, for which SEEs are
just one example.

As any other integrated environment, SEEs are complex sys-
tems that support very different activities. Different team
members act in different roles such as developer, administra-
tor, project manager, etc. On the other side, development
goes through different stages. Both dimensions refer to and
manipulate the same product: a model of some problem do-
main — to be refined up to executable software — which
is itself split into different stage–specific artifacts. Due to
this variety of concerns and facets involved, the design of an
SEE provides a good case study for applying multidimen-
sional separation of concerns. Our case study is a medium
sized SEE, called PIROL, developed at the Technical Uni-
versity of Berlin, Germany.

The contribution of the paper is twofold. First, it presents a
model for MDSOC in integrated environments with a strong
support for evolution. Not only does the model allow differ-
ent tools to be developed independently of each other; more
importantly, it preserves this independence beyond integra-
tion time. Obviously, software evolution is easiest when sys-
tem components are independent. However, independence
is a challenging goal in integrated environments, where in-
tegration requires fine–grained coordination of the involved

1

components. The design presented in this paper solves this
trade–off by separating the definition of tool integration re-
lationships from the tools themselves.

Our design is based on the repository architectural style [45],
where all tools are to be integrated with the shared repos-
itory. We distinguish between two levels of integration. At
what we call the “physical” level, a basic “wiring” between
decoupled tools is enabled by means of a uniform commu-
nication protocol. This wiring merely allows components to
exchange messages, implying, however, that the participants
exchange data of the same type. However, if tools are devel-
oped independently from their context of use, mismatches
in their domain models are very likely. We call “logical”
the level of integration responsible for handling these mis-
matches. We compare a design in which logical integration
is mainly a matter of tools, i.e., each tool is responsible for
the conversion of the data it exchanges with the repository,
with a design in which logical integration is separated out
of the tool definition. We show the superiority of the lat-
ter approach with respect to maintainability, reusability and
evolution.

The second contribution of the paper consists of an evalu-
ation of PIROL’s design along a set of questions that can
be used as a basis for comparing the chosen approach with
other MDSOC models. The questions we consider are:

Q1: Specialized language support: Is specialized (do-
main–specific) language support beyond the standard
object–oriented model needed for enabling separate
definition of concerns?
For instance, the aspect language D [24] provides
highly specialized constructs for the synchronization
and distribution concerns. In most other approaches
the actual implementation of concerns relies mostly
on standard object–oriented notions.

Q2: Explicit integration: Is concern integration defined
separately or is it part of the concern definitions?
The models of subject oriented programming (SOP
[15]) and Pluggable Composite Adapters (PCA [29]),
allow to define integration in separate units whereas,
e.g., in AspectJ [35] concerns and their integration
are defined in the same place.

Q3: Binding time: Are concerns bound at compile, link
or load time or can binding be delayed until run–time?
The role objects in delegation based approaches (e.g.,
[42]) still exist at run–time and can by bound dy-
namically. On the contrary, in SOP different concern
definitions are merged together at compile–time.

Q4: Binding granularity: Which entities in concern
definitions can be mapped to each other ?
PCA’s constructs of collaborations and composite
adapters are examples for higher–level units of con-
cerns and their integration. All relevant approaches
allow mapping at the level of classes and their
features.

Q5: Binding cardinality: Can concerns be applied mul-
tiply? Can elements of a concern be mapped to mul-
tiple elements of another concern?
Again PCAs are an example for flexibility, whereas,
e.g., in SOP each element from one concern can only
be bound to (at most) one element from each other
concern.

As we see, emerging MDSOC models answer these questions
differently. Also our experience shows that when applying
MDSOC to complex systems such as SEEs, there is indeed
no single answer to most of the questions above. Due to the
many trade–offs that need to be solved in such a system,
several co-existing alternatives should rather be supported.
Our answer to Q1 will be that standard object–oriented con-
cepts enhanced by some semantically useful concept of mod-
ules actually suffice for the separate definition of tools and
repository. However, domain–specific language features and
constructs appear to be better suited for expressing lower–
level concerns related to system properties, such as synchro-
nization, persistency, etc., since these interact with the other
concerns at a very fine–grained level. Similar trade–offs have
to be solved with respect to Q2. While the explicit integra-
tion layer, supported by advanced language constructs, is
the key to enabling true independence of tools, other con-
cerns, for which this independence is not an issue, should be
integrated more directly because the additional layer would
unnecessarily increase the system complexity in terms of the
number of units to be developed and might affect perfor-
mance, as well. It is obvious that run–time binding (Q3)
yields a greater flexibility, which has to be balanced, how-
ever, against the cost in code complexity and execution time.
Possible answers to Q4 also range from single attributes up
to complex modules. We will demonstrate the benefit of
allowing all levels of entities in a concern mapping, espe-
cially including a kind of module level that encapsulates a
set of collaborating objects. In a similar vein, we will show
examples where flexibility in binding cardinalities (Q5) is
crucial.

To summarize, our experience with PIROL suggests that
some form of “unification” of the MDSOC models is needed
that supports alternative answers to the above questions
(and others not considered here) regarding concern decom-
position and composition. This requires a systematic inves-
tigation of the design space of MDSOC models, which would
result in the definition of a “meta–model” for MDSOC soft-
ware formalisms in order to facilitate the combination of
several MDSOC techniques. This paper does not conduct
such an investigation. With the evaluation of PIROL’s de-
sign along the questions posed above, we only give first hints
about the direction of this investigation and provide some
evidence for its usefulness.

The remainder of the paper is organized as follows: In Sect. 1,
we present the initial design of PIROL based on a MDSOC
model without explicit support for integration of tools with
mismatching data models, and indicate the shortcoming of
this approach with respect to reusability, maintenance and
traceability. In Sect. 2, we introduce an explicit integra-
tion dimension and use class graphs as the top–level binding
unit. Sect. 3 evaluates this design along the questions posed
above. Sect. 4 presents related work, while Sect. 5 concludes
the paper and outlines areas of future work.

2

Repository

Workbench Workbench

Tool Tool

Session
User A

ToolTool

Session
User B

Message channel

Data access

Figure 1: Overall architecture of PIROL

1. FIRST DESIGN OF THE SEE PIROL
From the very beginning, separation of concerns has been
an important rationale in the design of PIROL [14 38]. This
is due to the goal to build a generic SEE framework that al-
lows independent tools to be closely integrated. Independent
means that (a) there are no explicit inter–tool invocations,
and (b) tools are developed for their own data model. Tools
may be delivered as pre-compiled units, which run as sepa-
rate processes, possibly across machine boundaries.

Yet, within the integrated environment tools (a) share a
common universe of basic abstractions — the intrinsic model
of a piece of software under development as well as the de-
velopment process itself – and (b) interact with each other
in performing some functionality, while (c) still preserving
their independence. As pointed out in [48], preserving tool
independence is crucial for facilitating evolution in an in-
tegrated environment, implying both (a) replacement of a
tool with a new version of it and (b) a-posteriori integration
of new tools. Our experience suggests that tool indepen-
dence beyond integration time is crucial also for enabling
flexible binding cardinalities, allowing e.g., shared data to
be simultaneously displayed and manipulated by multiple
tools and/or multiple co-existing documents belonging to
the same tool, whereby the involved tools or documents
may have specific, partially overlapping “perceptions” of the
shared data.

In this section, we show how a set of techniques for sep-
aration of concerns, most of which are well explored, was
combined into our first design of a framework for integrated
environments, that partially met our goals, but still suffered
from some shortcomings. An analysis of these shortcomings
motivates the introduction of another level of separation of
concerns into our design to be presented in Sect. 2.

1.1 Achieving “physical” independence
A first requirement was to provide a basic generic infrastruc-
ture that enables independent tools to “talk” to each other
even if they do not explicitly know about each other. For
this purpose, PIROL was designed with a three–tier architec-
ture (Fig. 1). The repository provides a central data storage
including basic services such as schema management, access
control, and transactions. The repository schemas define the
static part of PIROL’s meta model. The workbench defines
a user’s session. It contains an interpreter for the object–
oriented repository language Lua/P [16], that fully encap-
sulates the repository in that data from the repository are

Tool B
A: TOOL

getFont()
getDefaultHost()
getProgramPath()
select(obj: ANY)

changeFont()

<<proxy>>

Workbench

Tool A

Request:
Tool asks Workbench

Changed message:
Workbench notifies Tool

Tool Request:
Workbench delegates to Tool

<<proxy>>

M: Menu

Local method invocation

invoke(5)

(a)

(b)

(c)

(d)

A: TOOL

font
defaultHost
programPath
start()
shutdown()
isActive()
select(obj:ANY)

M: Menu

invoke(opt:int)

select(o5)

invoke(5)

message types:

Figure 2: Messages between tools and workbench

lifted to dynamic Lua/P objects, whose methods are executed
within the workbench. Hence, Lua/P classes define PIROL’s
full meta model, referred to as the repository model through-
out this paper and representing the universe of abstractions
shared by all tools. For client processes the workbench very
much resembles an OODBMS, with some additional features
that are not discussed here. Finally, Tools provide the only
means for user interaction.

As shown in Fig. 1, the communication between tools and
the workbench (as well as workbench–to–workbench mes-
sages) happens via an explicit multicast messaging facility,
that is based on the MSG package of the FIELD environ-
ment [40]. In order to communicate, tools and the work-
bench connect as clients to the messaging facility and reg-
ister as observers of certain events. Due to this decoupled
communication, tools may be implemented independently
and in any language (that can interface C — the language
in which MSG is written). They access objects in the repos-
itory by means of proxy classes, that (via MSG) transpar-
ently delegate all accesses to the workbench by means of set
and get methods as well as method wrappers (cf. message
type (b) in Fig. 2)1.

The repository architectural style [45] also requires a mech-
anism for automatic change propagation. The workbench is-
sues changed messages for each value that is changed within
the repository ((c) in Fig. 2). Tools register with the mes-
saging service as observers of such messages installing the
necessary callbacks for updating the tool’s display and in-
ternal data whenever a relevant changed message is issued
to the message channel. The mechanism of change propaga-
tion is thus decomposed into three concerns: (1) the work-
bench is responsible for generating changed messages, (2)
the message facility dispatches these messages to the regis-
tered observers and (3) tools only need to implement their
specific reaction (redisplay etc.).

In addition to this data driven communication, PIROL also
allows one tool to (indirectly via the workbench) invoke
methods of another tool. For this purpose, the workbench
represents each tool by an object of the Lua/P class TOOL.

1Most tools are currently implemented in Java, for which a
library of proxy classes exists.

3

CLASS RELATION2 *

FEATURE

ENTITY ROUTINE

SUBSYSTEM

TYPEtype

subsystem

classes

features

name : String
is_deferred : Boolean

name : String

Figure 3: Extract from the repository’s meta model

This class has methods that delegate execution (via the mes-
saging facility) to the running tool process ((d) in Fig. 2).
This feature is used e.g., to implement the notion of a con-
text menu that enables the user of a tool to start or oth-
erwise control other tools. When a tool (say, Tool B in
Fig. 2) requests the context menu for a given object, the
workbench configures a menu definition in the shape of a
repository object based on the knowledge about currently
installed tools and their features. The tool displays the
menu and lets the user select an option. Now, the method
invoke(optionIndex) (called on the menu proxy and passed
to the menu repository object) may, e.g., result in a call of
the method select to the TOOL object that represents A in
the workbench. The latter call is finally forwarded to the
process running tool A.

To summarize, the message channel provides a generic
“wiring” which enables a physical decoupling between tools
and the workbench. It is implicit with the message chan-
nel that tools are not only separate processes but they may
be distributed all over the internet. Deploying a tool with
special resource requirements to a dedicated host is simply
configured by means of the TOOL object.

1.2 Striving for “logical” independence
The infrastructure presented so far enables “physical”
“wiring” of tools and repository. As also pointed out in
[4], this basic wiring is, however, not enough. Allowing
each tool to be developed independently with its own data
abstractions requires also some form of logical pluggability
responsible for dealing with mismatches between the data
models of tools and PIROL’s meta model.

Meta model mismatches
The repository model includes only elements that contribute
to the structure and semantics of the system under develop-
ment. Classes in the repository model are, e.g., SUBSYSTEM,
CLASS, FEATURE etc. (cf. Fig. 3). Different tools have, in
general, their own specific abstractions. For instance, the
meta–model of a concrete graphical editor for (a variant of)
UML class diagrams, called ZooEd [31], which we will use
as an example throughout this paper, is presented in Fig. 4.
This model defines the abstractions on which the editor op-
erates and which it needs to store in the repository.

Note, that the two models in Fig. 3 and Fig. 4 are com-
pletely independent of each other. For instance, when com-
paring the class abstractions in both meta models, namely
CLASS in Fig. 3, and Class in Fig. 4, it appears that the

Class

Package

abstract : Boolean
shrink : Boolean

ImportedClass

Attribute
type: String

Method

classes
from

attributes methods

links
GeneralClass

name : String
position : Point

Link
line : List(Point)

Figure 4: Meta model of a tool for UML class dia-
grams.

latter is mainly a graphical abstraction, defined in terms
of its position and appearance (the latter is determined by
the attributes shrink, responsible for collapsed display of
a symbol, and abstract, toggling italic/non-italic fonts).
Furthermore, a CLASS object has a single list of features

(cf. Fig. 3), whereas classes as seen by a UML–diagram ed-
itor keep separate lists for Attributes and Methods, which
are drawn in different sections of a class symbol in a UML–
diagram. Another difference concerns the representation of
the type of an attribute. In Fig. 3, the type of a FEATURE

(and its subclasses) is represented by the class TYPE. On the
contrary, a simple string is perfect for representing the type
of an Attribute within a UML class symbol (cf. Fig. 4).
Thus, some abstractions in a tool’s meta–model have direct
correspondences to abstractions in the repository model,
e.g., name, others can be somehow derived from abstrac-
tions in the repository model, e.g., attributes and methods,
and yet others are completely new, e.g., the position in
GeneralClass.

Storing shared versus tool–specific data
Given the differences in the meta models and our goal to fa-
cilitate the evolution of the integrated environment with new
tools, tool–specific abstractions, e.g., a class diagram or any
document, are not defined as part of the repository model.
Instead, we distinguish two kinds of persistent objects: the
regular repository objects (RO) are defined by PIROL’s basic
meta model and carry all information that is to be shared
between tools. In addition, documents that are manipulated
by tools are modeled as a special type of persistent objects,
called conceptual objects (CO). A CO defines a specific view
onto a set of ROs: it encapsulates additional properties of
ROs, relevant for the view at hand. For instance, a CO for
a UML diagram encapsulates graphical information about
the (CLASS) ROs included in the diagram such as their po-
sitions, fonts, expand/collapse flags, etc. Document specific
properties are stored in a CO basically as a hash table; each
entry in the table associates a value to a key–pair consisting
of the name of a tool–specific property and the ID of the
RO to be decorated with this property. COs are persistent
objects with an open structure: a tool may store arbitrary
properties for any RO without prior declaration.

For illustration consider the scenario presented in Fig. 5. In
the upper part of the figure two documents are shown as they
are displayed to the user of the graphical editor, represent-

4

Accounting

Account

balance : Amount

Customer
from Customers

Customer

name : String
address : Address

#c1 :CLASS

name = "Customer"
...

Documents:

Proxies for
Persistent
Objects:

COs:

ROs:

created by a User

implemented by a Tool

stored in the Repository

Customers

#at1:AT

#co1 : CO
name = "Accounting"
ROID
#c1
#c2
...

property
position
position

value
(10,42)
(2,4)

#co2 : CO
name = "Customers"
ROID property

position
shrink

value
(7,20)
False

#c1
...

Figure 5: Documents are implemented as COs

ing two different packages, Accounting and Customers. The
symbol for the class Customer appears in both diagrams (it
is defined in one package and used in the other). The lower
part of the figure shows a subset of the persistent objects
that represent the two documents in the repository. Each
Class object manipulated by the tool is represented by two
different objects in the repository. Intrinsic information is
stored within a CLASS object, while tool–specific properties
are stored within conceptual objects, one for each document.
E.g., the appearances of Customer in the Accounting, re-
spectively Customers class diagrams, correspond to two RO–
CO pairs in the repository, {#co1, #c1} and {#co2, #c1}
respectively. The first line in #co1 reads: CLASS object #c1

is drawn at position (10,42) within the first document.

This separation of intrinsic from tool–specific concerns into
two distinct repository objects, i.e., beyond compile–time,
is crucial. It allows e.g., the same CLASS object to appear
at different positions and with different representations in
different documents. The idea is that (a) there might be
several tool–specific (overlapping) definitions corresponding
to the same base abstraction, and (b) the decision which one
to use might depend on run–time state and/or context. This
is what we referred to as flexible concern binding cardinality
in the previous section. If integration of different concerns
was based on compile–time weaving of all partial definitions
into one whole, as e.g., with IBM’s MDSOC model [34] or
Garlan’s model of basic views [9], it would be difficult to
express the fact that the same class object should appear
differently depending on whether the package being shown
in an UML class diagram owns or imports the class at hand.
Furthermore, it would be impossible to have the same class
simultaneously displayed in as many different positions, as
there are UML documents on the display that contain the
class.

Working with different views of shared data comes with the
risk of compromising the semantical integrity of the shared
data, since changes may be performed within a view, that
does not see the full shared data model nor its invariants.
Lua/P’s mechanism of guarded attributes (see [16] for details),
which allows access–oriented programming comparable to
LOOPS’ active values [47], comes into play here. Attribute
guards introduce an additional layer between regular ma-
nipulation of ROs and their persistent representation, in-
tercepting all access to an RO attribute and implementing
appropriate policies of enforcing constraints over repository
data. For instance, by attaching a guard to the is deferred

flag of a ROUTINE, the following constraint can be enforced:
“each class that has at least one deferred routine is deferred,
too”. So when changing a ROUTINE to deferred, it is ensured,
that also the CLASS will be set to deferred, if it was not al-
ready deferred before. The change is propagated from one
RO to another. As attribute guards sit below every view
definition, integrity constraints as implemented by means of
guards apply to repository access independent of the view
from which it originates. That is, PIROL’s repository model
comes with a meta–level exclusively responsible for encod-
ing and maintaining constraints that ensure the semantic
integrity of repository data, no matter what views will be
defined over that data and how they access it. As an aside,
note that changes on the repository caused by the execution
of a policy associated with a guarded attribute are propa-
gated to interested tools (views) in the same way as changes
directly originating from some tool access.

Logical tool integration
Having intrinsic and tool–specific features of a tool object
encapsulated within different objects in the repository also
poses the question of how and where to (logically) integrate
these two distinct feature sets to construct a single object
as seen by the tool. Stated differently, the question is how
to map the features of a tool object to respective features
in the corresponding RO–CO pair in the repository. The
approach taken in the first design of PIROL was to in-line
this mapping functionality into each tool’s implementation.
If this mapping was not taken into account during a tool’s
development, its source code had to be modified at integra-
tion time. For illustrating some advantages and pitfalls of
PIROL’s design, as presented so far, we briefly report the
experience with integrating ZooEd [31], whose source code
was available to us.

We integrated ZooEd into our SEE framework by follow-
ing three steps: (1) defining a structural mapping between
ZooEd ’s objects and their representations in the repository,
(2) ensuring that user interactions trigger the appropriate
repository updates using the defined structural mapping and
(3) making sure that the defined structural mapping was also
used to translate messages from the workbench to appropri-
ate updates within the tool.

The first step was realized by defining adapter classes for
all classes in ZooEd ’s meta–model (cf. Fig. 4). The object
structure in Fig. 6 shows how an adapter object mediates
between a tool object and proxies to repository objects that
store the data for the tool object2.

2The figure shows the simplest case of mapping exactly one

5

aClAdapter: ClassAdapter
nameUpdated(...)
positionUpdated(...)
attributesUpdated(...)
...

tObj rObj
aClRo: CLASS

<<proxy>>

roID property value
position

shrink
...

(10,20)
false

roId: roId_1

aCLRO: CLASS
roId: roId_1
name:Customer
features: ...
....

aCO: CO

TOOL (Java objects)
Workbench (Lua/P objects)

setProperty(...)
getProperty(...)
...

doc1: CO
<<proxy>>

roId_1

cObj

...

aCl: Class

name: Customer
position: (10,20)
attributes: ...
methods: ...
...

Figure 6: Structure of adapter objects.

For the second step, it was necessary to find all places in
ZooEd ’s code where relevant changes to the tool’s internal
data happened, so that actions on the appropriate adapters
could be triggered. Fortunately, the design of ZooEd con-
sequently used the command pattern [8] to model all “rel-
evant” user interactions with the tool. For all command
classes, the relevant adapters had to be identified (this re-
quired some administrative functions for adapter retrieval),
and changes had to be classified such that each command
could trigger appropriate updates of the repository via the
adapter (cf. the methods nameUpdated etc. in Fig. 6). Note,
that the command classes had to be modified in place: sub-
classing was not feasible in this case, because creation of
command objects (i.e., references to command classes) is
spread all over the tool.

For realizing the third step above, in addition to translating
changes from the tool to repository changes, each adapter
object is also responsible for listening to changes in the
repository and reverse–translating them to changes in the
state of tool objects. This could involve directly manip-
ulating one or more tool objects (possibly repeating code
very similar to that of some command class) or creating
and configuring a command object that could perform the
changes. In the latter case, great care had to be taken in
order to avoid infinite change loops that would occur, if com-
mands triggered by user interaction were indistinguishable
from those invoked in response to a notification from the
workbench.

Apart from these three steps, only the top–level class had to
be modified, in order to connect to the workbench and in-
stall the initial adapters. No changes to the repository were
required except for creating a new instance of type TOOL,
that represents ZooEd and maintains its basic configura-

tool object to one RO (plus the CO representing the doc-
ument). Generally, an adapter mediates between more ob-
jects on either side and manually implements the knowledge
of how data interrelate in both directions

tion. Being able to integrate a new tool without changing
the repository model is what we gained from the separa-
tion of concerns within the meta model encoded by the RO–
CO distinction along with tool encapsulation using the class
TOOL.

1.3 Drawbacks of the first design
The ZooEd example reveals several drawbacks of encoding
logical integration concerns into the tool’s implementation3.

First, the structural mapping between both models is hand–
coded multiply. For instance, all three following adaptations
implement essentially the same structural mapping (if we
ignore the direction of mapping):

• Each command object needs to retrieve one or more
appropriate adapter objects and call the appropriate
update method(s) in order to write relevant changes
to the repository.

• Each adapter object needs to react to changed mes-
sages from the workbench. For this task, it needs to
know (a) which tool–internal objects should be mod-
ified and (b) how to trigger the appropriate redisplay
within the editor. Especially difficult is the tracking
of changes of CO properties: because all properties are
stored in just one table it is not trivial to find the ap-
propriate adapter object that is able to propagate the
change to the right objects.

• To display a class diagram from the repository, each
adapter implements a traversal over all components of
its adapted RO. During this traversal, new tool ob-
jects, to be included within the drawing area, as well
as proxies to the corresponding ROs and corresponding
adapters are created.

Hence, structural mapping is spread over the tool implemen-
tation, tangled with code that implements other concerns
such as change propagation (adapters) and basic tool func-
tionality (commands, iteration of object structures etc.).
Changing the implementation of one aspect will probably
unnecessarily affect the others: they can not be reused in-
dependently of each other. For instance, after the in-place
modification it is impossible to reuse the implementation of
the tool’s basic functionality with another repository model
(or with a modified model of the same repository). On the
other hand, different versions of a tool cannot reuse (parts
of) the structural mapping aspect. One can envisage an
upgrade of the UML diagram editor ZooEd.v2 that sup-
ports presenting the symbols for inner classes à la Java [2]
as graphically contained within the symbol of the enclosing
class. Evidently, the integration of ZooEd.v2 could reuse
much of the structural mappings of ZooEd.v1P (the old ver-
sion with adaptation for PIROL), since the data model of
ZooEd.v2 would be a “refinement” of ZooEd.v1 ’s model.
However, if the adaptation code is hand–coded into the im-
plementation of ZooEd.v1P, the structural mapping does not
exist in one place and cannot be reused. This is schemati-
cally represented in Fig. 7.
3Note, that the drawbacks discussed here apply to both the
case when structural mapping is included in the tool imple-
mentations from the very beginning, and the case, when it
is inserted later via in-place code modifications.

6

T.v1

T.v1ZooEd.v1P

standalone Tool

integrated in PIROL

ZooEd.v1
develop

adapt adapt again

no reuse

T.v1

T.v1ZooEd.v2P

ZooEd.v2

Figure 7: Adapting consecutive versions of ZooEd

A second design of the current design is that the properties
stored in COs are handled as improper attributes: explicit
queries to the CO are needed instead of direct attribute ac-
cess at the RO. Also, no type information for CO–properties
exists. As a result, no type checking is possible on these
properties, and their correct use depends solely on the pro-
grammer’s discipline.

Last, but not least, the design presented so far assumes that
the source code of tools is available. This is not always the
case, since tool providers want to protect their intellectual
property. This is where many projects of tool integration fail
and it may in fact be the most important reason for striving
for a separation of tool implementation and its structural
mapping to the repository.

1.4 Summary so far
We distinguished between two facets of tool independence
to be considered by tool integration: physical versus logi-
cal. Two tools are considered as “physically” independent,
if they do not explicitly invoke or otherwise reference each
other. PIROL supports the integration of “physically” inde-
pendent tools by means of: (a) its three–tier architecture,
where tool interaction with the repository and other tools is
explicitly modeled by the messaging facility and the work-
bench, and (b) its implicit invocation [48] mechanism based
on the messaging facility4. As argued in [48], a design based
on implicit invocation via an intermediate unit satisfies the
requirement for “physical” independence5.

Two tools are logically independent, if their data models are
independent. The design of any integration framework has
to deal with this kind of independence, as well. The question
we pose here is how to do so without compromising the ease
of evolution in an integrated environment. We claim that
explicit support is required for this kind of logical interac-
tion between tools justifying this claim by the drawbacks of
the design of PIROL as presented so far, where independence
is achieved at the cost of a clear and maintainable structure.
While at the repository level, intrinsic and tool–specific ab-
stractions are clearly separated into different persistent ob-
jects, mapping between tool and repository models is not
explicit, but rather in-lined into the tool’s implementation:
a design that impedes evolution.

4Note, that also attribute guards are invoked implicitly, i.e.,
without the caller’s knowledge.
5There is no distinction between “physical” and “logical”
independence in [48]: what they deal with is actually only
the physical aspect of tool independence as considered in
this paper.

2. DYNAMIC VIEW CONNECTORS
The shortcomings of the first design have motivated the in-
troduction of an explicit construct into Lua/P where to define
the structural mapping necessary for integrating a tool into
the environment. The new construct, called dynamic view
connectors (DVC), is implemented as a special Lua/P class
whose instances build a new abstraction layer between tools
and the workbench. We call this additional abstraction layer
virtual repository. Each tool has its own virtual repository
— a simulation of a repository that matches the model of
the tool. The virtual repository is implemented by DVCs on
top of the given design using COs. They will, however, hide
COs and provide for uniform access to RO attributes and
properties in COs. In the following, we first present a rough
sketch of what kind of objects live in a virtual repository
(Sect. 2.1) before going into the details of how to define it
(Sect. 2.2).

2.1 The structure of virtual repositories
It is obviously preferable to have a repository whose model
matches the model of a tool to be integrated: the tool sim-
ply works with proxies to repository objects responsible for
bridging the language barrier between the tool and the work-
bench and no adaptation is ever needed. However, in an
environment where the repository must meet the needs of
many tools, adjusting the repository to all tools would yield
a bloated repository model with many redundant definitions
introducing immense consistency problems, let alone its non-
cohesive structure and name clashes.

Our solution to this trade–off is to simulate a best matching
repository for each tool — this is what we call a virtual
repository. Instead of having the structural mapping for a
certain type in the tool’s model being spread around the tool
implementation, define virtual repository classes (VC) that
encode exactly this mapping at a single place by providing
an abstract view of underlying “real” repository abstractions
(VC may also be used as an acronym for “view class”). A
VC may also add new features as they are needed by the
tool. There is a 1:1 relation between instances of the tool
and virtual (or view) objects (VOs), the latter serving to the
Lua/P interpreter as “dispatchers” for attribute accesses on
the former.

For illustrating the idea, Fig. 8 redraws Fig. 5 in the presence
of VOs. Until now it was the tool’s responsibility to map
each object from its data model to an RO and a CO in the
repository (this mapping was not represented in Fig. 5, as
it is not localized in a single place within the tool). The
additional layer in Fig. 8 performs exactly this mapping.
Actually only objects #c1, #co1 and #co2 are persistent.
Objects #ic2 and #c3 exist only during a user session and
merely encode a mapping function. However, for the tool
they appear to be repository objects. That is why we call
them objects of a virtual repository. A VO is identified by
the ID–pair (roid x coid) referring to the RO–CO object
pair (as already seen in the old design) that is now virtually
merged into a single abstraction.

One can think of VOs as implementing roles [42 52] of real
ROs: e.g., ImportedClass is a role, that any CLASS object
may acquire in the context of a UML class diagram. Ac-
quiring a role means eventually to gain new properties (e.g.,

7

Accounting

Account

balance : Amount

Customer
from Customers

Customer

name : String
address : Address

Documents:

manipulated by a Tool

Customers

#c3 :Class
name = "Customer"
position = (7, 20)
shrink = False
...

#ic2:ImportedClass

name = "Customer"
position = (10, 42)

mapped by a DVC

Virtual
Repository(#co1)

#c1 :CLASS

name = "Customer"
...

COs:

ROs: #at1:AT

#co1 : CO
name = "Accounting"
ROID
#c1
#c2
...

property
position
position

value
(10,42)
(2,4)

#co2 : CO
name = "Customers"
ROID property

position
shrink

value
(7,20)
False

#c1
...

Real Repository

VOs: Virtual
Repos.
(#co2)

Figure 8: A virtual repository simulates tool objects

position). Note that the same base object may play differ-
ent roles in different contexts. For instance, #c1:CLASS in
Fig. 8 plays an ImportedClass role within the context of the
Accounting diagram and a Class role within the context of
the Customers diagram. The acquired properties differ from
one role to the other. Other properties are shared from the
base object (e.g. the name).

A base object plays a given role always with respect to a cer-
tain context which comprises a set of collaborating objects.
The idea is that the process of creating a virtual repository
from the real repository model occurs not at the level of indi-
vidual classes, but rather at the level of collaborating classes:
When following the features association of a CLASS RO as
seen from a Class VO, all reachable ROUTINE ROs are implic-
itly adapted to Method VOs. Adaptation of reachable ROs
to VOs of the corresponding roles is automated by the work-
bench. In fact, as we will see, both Class and Method will be
defined together as types participating in the same higher–
level abstraction, that of a UML CLASS DIAGRAM. Techniques
for grouping a graph of objects as adaptations of some base
graph of objects are being developed as Adaptive Plug&Play
Components[28] and Pluggable Composite Adapters[29].

With the virtual repository abstraction being part of PIROL,
each tool is written as a self–contained component to its own
meta–model — its functionality is encoded in a set of col-
laborations between the elements in its meta–model. The
latter is defined by a set of nested interfaces which is called
the expected interface of the tool. This defines the tool’s
“view” of the repository, or, alternatively, an “ideal” repos-
itory model tailored to the specific needs of the tool. Fig. 9
shows part of a textual representation of the model in Fig. 4
— this is the expected interface to which the UML–diagram

component interface GRAPH {
interface Node { position : Point }
interface Edge { line : List(Point) }

}
}
component interface UML CLASS DIAGRAM inherit GRAPH {

interface Package {
name : String
classes : List(Class)
links : List(Link)
method findClass (name: String) : Class

}
interface GeneralClass inherit Node {

name : String
}
interface Class inherit GeneralClass {

abstract : Boolean
shrink : Boolean
attributes : List(Attribute)
methods : List(Method)
creation place
method place (name: String, pos: Point)

}
...other interfaces

}
}

Figure 9: Expected interface for UML class dia-
grams.

editor is implemented without any knowledge of the reposi-
tory model.6

Integrating a tool into the environment requires to “imple-
ment” its expected interface, by defining how elements of
the tool model are composed from corresponding ROs and
by introducing additional features that might be missing
from the repository model. This is realized via a connec-
tor class. A connector instance is a first–class object that
defines a virtual repository as an aggregate of collaborat-
ing VOs (following [28] we could say: participant graph) in
terms of an aggregate of ROs. By being a first–class object
it can be applied dynamically to perform tool integration,
hence, the name dynamic view connector.

CO

TOOL_A_CONNECTOR

CONNECTOR

attribute1 : t1
method1(a :t2) : t3

VC1

VC2

VC3

VC4

TOOL_B_CONNECTOR

TOOL_C_CONNECTOR

Figure 10: Hierarchy of connector classes

2.2 Mapping constructs
Like any Lua/P class, connector classes contain feature defini-
tions and may inherit from other connector classes. Further-
more, a connector class nests a set of view classes, one for
each interface in the tool’s expected interface. The classes
CO and CONNECTOR are predefined in the repository model
with the connector inheritance hierarchy as shown in Fig. 10.

6 The interface GRAPH introduces some general abstractions,
that are used by classes in UML CLASS DIAGRAM.

8

Connectors supersede the conceptual objects mentioned in
Sect. 1, so in the sequel the abbreviation CO is used for
connector object.

The constructs that make up a connector definition will be
illustrated by means of the example connector UML CLASS-

DIAGRAM CONNECTOR in Fig. 11, which implements the UML-

CLASS DIAGRAM tool model of Fig. 9 on top of the reposi-
tory model of Fig. 3. Within a Connector definition (10)7

there are five constructs that define structure and behav-
ior of the connector objects (beside those that define view
classes nested in the connector): inherit, attributes, meth-
ods, creation and root. The keyword inherit serves to de-
fine a new connector class by inheriting from an existing
one, the same way, e.g., extends does for classes in Java.
For instance, UML CLASS DIAGRAM CONNECTOR inherits from
GRAPH CONNECTOR (11) which provides abstractions such as
Node and Edge: a UML class diagram is actually a graph.
The keyword attributes serves to declare attributes of con-
nector instances. Each instance of the connector class in
Fig. 11, e.g., refers to the top–level SYSTEM RO (13) contain-
ing the package that is being shown in the UML diagram at
hand. Similarly, the keyword methods introduces methods
that can be applied to connector instances. The creation
clause is used to declare the instantiation method for the
connector (16), since Lua/P has no constructor naming con-
vention à la Java. In our example, it is the connect method
(18) that should be called in order to create instances of
UML CLASS DIAGRAM CONNECTOR (the usage and implementa-
tion of this method will be discussed in some more detail
in Sect. 2.3). The RO and VO aggregates that are mapped
by a connector both have a designated root object which is
known within a CO as root ro and root vo, resp. The type
of the root VO is declared in the root clause of a connector.
In Fig. 11, the root view class is Package (15).

Connector–level definitions are followed by nested view class
definitions. First, for each view class VC used by the tool, the
roclass clause declares the repository class RC to which VC

is mapped. For each instance vo: VC, vo.co refers to the en-
closing connector, while vo.ro refers to the repository object
ro: RC of which vo is a view within vo.co. Three constructs
(uses, filter and redirect) define how virtual objects are con-
structed out of the data stored in ROs. New attributes
and/or methods of a view class that have no correspondence
in the RO class are defined within the adds construct. Map-
pings as well as added attributes/methods are also inherited
from parent view classes (possibly defined in a parent con-
nector class). For instance, GeneralClass (30) inherits the
attribute position from Node in GRAPH CONNECTOR.

uses. This construct specifies those features of a view class
that are identified with features of the corresponding RO
class. This clause may optionally rename the repository fea-
ture and/or specify the view type to which the value of the
feature ought to be converted to. For illustration consider
the uses clause in the definition of ImportedClass (38). It
specifies that (a) the feature subsystem from the underlying
RO class CLASS (cf. Fig. 3) is visible in the ImportedClass

view under the name from, and (b) when used in this con-
text the value of this feature is to be automatically (by the

7 Throughout this subsection, numbers in parentheses de-
note line numbers in Fig. 11.

1 Connector GRAPH CONNECTOR {
2 root = Node
3 class
�� ��Node {

4 adds = {position : Point}
5 },
6 class
�� ��Edge {

7 adds = {line : List(Point)}},
8 },
9 }

10· Connector UML CLASS DIAGRAM CONNECTOR {
11 inherit = GRAPH CONNECTOR,
12 attributes = {
13 system : SYSTEM,
14 },
15 root = Package
16 creation = connect,
17 methods = {
18 connect (root ro : SUBSYSTEM)
19 CONNECTOR:connect(root ro)

20· system = root ro:get system()
21 end
22 },
23 class
�� ��Package { roclass = SUBSYSTEM,

24 uses = {
25 classes : List(GeneralClass),
26 links : List(Link),
27 findClass (name: String) : GeneralClass,
28 },
29 },

30· class
�� ��GeneralClass { roclass = CLASS,

31 inherit = Node,
32 },
33 class
�� ��ImportedClass {

34 inherit = GeneralClass,
35 predicate ()
36 return not co.root ro:eq(ro.subsystem)
37 end,
38 uses = { from : Package = subsystem }
39 },

40· class
�� ��Class {

41 inherit = GeneralClass,
42 predicate ()
43 return co.root ro:eq(ro.subsystem)
44 end,
45 creation = {place},
46 uses = { abstract = is deferred },
47 adds = { shrink : Boolean },
48 filter = {
49 attributes : List(Attribute) = {

50· base = {features : List(FEATURE)},
51 predicate (f : FEATURE)
52 return f:conforms(”ENTITY”)
53 end
54 },
55 methods : List(Method) = {
56 base = {features : List(FEATURE)},
57 predicate (f : FEATURE)
58 return f:conforms(”ROUTINE”)
59 end

60· }
61 },
62 accept ()
63 shrink = False
64 ro.subsystem = co.root ro
65 end
66 },
67 class
�� ��Attribute { roclass = ENTITY,

68 redirect = { type : String = { /∗ see Fig. 12 ∗/ }}
69 }

70· class
�� ��Method { roclass = ROUTINE

71 adds = { body : String }
72 }
73 class
�� ��Link { roclass = RELATION,

74 inherit = Edge,
75 }
76 }

Figure 11: Connector for UML class diagrams.

9

run–time machine) converted to a VO of type Package as
defined within the same connector. Details of converting an
RO to a VO (we also use the term lifting for this process)
will be given later in this section. Note that the uses dec-
laration for findClass in Package (27) refers to a method
that is adapted just like the attributes shown above: within
this connector the method result is assumed to be of type
GeneralClass, that is, each resulting object is lifted to the
view class GeneralClass.

adds. A view class may introduce new attributes that do not
have counterparts in the repository. E.g., attributes shrink
(47) and position (from Node (4)) of Class, declared using
the adds keyword, do not relate to any attributes in the
repository model.

filter. This construct may be applied to 1:n repository level
associations (list–attributes), in order to produce selective
views of a them. The repository list–attribute to be filtered
is specified by the keyword base. A predicate function deter-
mines the selection criterion. It is applied to each element of
base to decide if it should be included in the corresponding
tool–specific list–attribute. Elements of the base list that
pass the test are converted to a view class when included
into the resulting list. In Fig. 11, Class defines two selec-
tive views on the features attribute of CLASS. The filters
attributes (49) and methods (55) split the base list at-
tribute features according to the type of each element into
a list of ENTITIES that are lifted to Attributes and a list
of ROUTINES that are lifted to Methods.

A predicate may also be associated with a view class. For in-
stance, both classes Class and ImportedClass define views
on the same RO class CLASS. Whether instances of CLASS

should be seen as Class, respectively ImportedClass, de-
pends on the result of evaluating the respective class predi-
cates (35,42) at run–time. So, when reading a Package’s list
of classes (25) within the context of a connector, each RO
contained in the base list attribute (classes of SUBSYSTEM

in Fig. 3) is examined with respect to the predicate of each
candidate view class Class and ImportedClass. The view
class whose predicate function returns true is chosen for lift-
ing8.

redirect. Any other mapping that cannot be declaratively
expressed with the constructs discussed so far can be hand–
coded by defining two functions: get and assign for reading,
respectively writing the value of an attribute. For illustra-
tion, recall the structural mismatch between the representa-
tion of Attribute types in the graphical editor — a String

— as opposed to the representation of FEATURE types in
the repository — an instance of the repository class TYPE.
The uses construct is of no help here. Since String is a
Java predefined rather than a view type whose definition is
available within the connector, the Lua/P VM has no idea of
how to convert TYPE to String and back. The programmer
of the connector provides the VM with this knowledge by
hand–coding the conversion process. When going from the
repository model to the tool model, the name of the TYPE

8 For the time being, we restrict class predicates to be based
on constant attributes only, although object migration, i.e.,
dynamically changing the type of an object, might become
a relevant topic here.

. . .

class
�� ��Attribute {

roclass = ENTITY,
redirect ={�� ��type : String = {

get ()
return ro.type.name

end,
assign (value : String)

local type
if value == ”” then

ro.type = nil; return
end
type = co.system:find type(value)
if not type then

error(”Unknown type ”..value)
end
ro.type = type

end
}

}
}
. . .

Figure 12: Manual redirection of attribute type

RO will do perfectly, as shown in the implementation of get
in Fig. 12. The other way around, translating a string rep-
resentation of a type to a TYPE RO, when the user enters
the type of an attribute via the UML diagram editor, is
more tricky. It involves the system attribute of the enclos-
ing connector: the method find type of SYSTEM is invoked
to find a TYPE RO whose name matches the string passed as
a parameter to assign. Another example for the usefulness
of the redirect construct is when an association between
two classes in a connector should be mapped to a compound
path between classes in the repository model.

2.3 Repository, view, and connector objects
Fig. 13 illustrates the run–time structure of connector ob-
jects and the relationships between the involved VOs and
ROs, by the example of the UML CLASS DIAGRAM CONNECTOR

instance for the Accounting document in Fig. 8 (#co1). The
dependencies labeled {uses} and {filter} illustrate, how val-
ues are shared between the involved VOs and their cor-
responding ROs. The {adds} dependency shows that the
added attribute position is stored in the surrounding CO.

Let us now consider how the relationships between ROs, VOs
and COs, are established and maintained. Fig. 14 illustrates
how root ROs enter a connector when the latter is created.
As defined in Fig. 11, connect expects the root RO (in this
case of type SUBSYSTEM) to be passed as a parameter. In
Fig. 14, we assume that s1 is the RO for the Accounting

subsystem (#s1 in Fig. 13). The execution of the first line
in Fig. 14, will

(a) create an instance of UML CLASS DIAGRAM CONNECTOR

(#co1 in Fig. 13),

(b) set the root ro of #co1 to #s1,

(c) initialize the attributes of #co1 (e.g., the system is ini-
tialized with the result of calling get system on #s1),

(d) wrap #s1 into a Package VO (#p1 in Fig. 13) and set
this VO to be the root vo of the connector (#co1).

Of these steps, (b) is triggered by calling the inherited ver-
sion of connect (line 19 in Fig. 11) and only (c) is explic-

10

#ic2 position (10, 42)

#co1 : UML_CLASS_DIAGRAM_CONNECTOR

#c1 :CLASS

name = "Customer"
...

#ic2:ImportedClass
position = (10, 42)

features

#at1 : Attribute

name = "address"

{filter}

{uses}

{adds}

attributesclasses

classes

{uses}

#p1 : Package

name = "Accounting"
root_vo

#s1 :SUBSYSTEM

name = "Accounting"
...

#e1 : ENTITY

name = "address"
...

CO

VO

RO

name = "Customer"

co
ro

root_ro

co
ro

co
ro

...

ROID property value

Figure 13: Run–time relations between ROs and VOs in a Connector.

itly specified by the programmer in the implementation of
UML CLASS DIAGRAM CONNECTOR::connect. The rest is taken
care of by the Lua/P interpreter.

. . .
co1 = UML CLASS DIAGRAM CONNECTOR:connect(s1)
ed = Workbench:get tool for document type(co1.class)
ed:show(co1.root vo)
. . .

Figure 14: Connector instantiation

In Fig. 14, #s1 enters a connector explicitly: this is the case
with root ROs. Other ROs might enter a connector scope
implicitly when they are reached via a reference (from an-
other already lifted RO) for which a view mapping is defined
in a uses or filter declaration. It is the type defined in this
mapping (the declared type of reference), that is used to au-
tomatically lift (wrap) an RO to a VO.

When a VO comes into being, i.e., its base RO is lifted within
a given connector for the first time, its added attributes, if
any, are still uninitialized. The accept function within the
definition of a view class initializes the added attributes of a
VO (see lines 62–65 in Fig. 11 for an example). Invoking ac-
cept is done automatically by the Lua/P interpreter. Accept
functions are written by the programmer just like creation
methods/constructors, with the only difference, that accept
operates on a VO whose used and filtered attributes are al-
ready available from the underlying RO and the references
ro and co have been set. Only the VO’s added attributes
need to be initialized.

The interpreter automatically converts a VO to an RO, —
the lowering operation — every time a VO is passed out-
side the context of a connector, e.g., as an argument to a
workbench request involving a different tool. A VO–to–RO
conversion is equivalent to evaluating the expression vo.ro.

2.4 Hand coded mappings versus specialized
constructs

As indicated above, actually any attribute mapping can be
expressed by the redirect construct. So, why do we then
need the other constructs, uses, adds, filter besides the class
level mapping constructs roclass and predicate? There are
two main reasons for providing specialized constructs for

recurring patterns of mapping.

First, the declarative style achieved through high–level con-
structs improves the readability and maintainability of the
connector code. Without specialized constructs, connector
classes will very likely contain a lot of stereotyped code du-
plication and unnecessarily include too much detail about
the repository model. This results in connectors that are
difficult to read, evolve and maintain.

Second, using only redirect mappings could severely impact
the performance of the system. To understand why, one
has to reconsider change propagation in the presence of vir-
tual repositories. Before the introduction of VOs, every data
change in the repository unambiguously concerned a single
RO. Hence, it was easy to deliver change notifications on
the basis of ROs and their attributes. With VOs, it is, how-
ever, common that one atomic change in the repository af-
fects several objects: one RO and all VOs that are views
of that RO. It is crucial that VOs are also notified in order
to preserve consistency between all documents in the envi-
ronment. Change notifications concerning VOs need to be
generated automatically just like for ROs to ensure that the
difference between ROs and VOs remains transparent for the
tools. They are implemented only against their expected
interface from which proxy classes are generated, without
knowing, which proxy objects stand for ROs and which for
VOs. In fact, only this seamless access of ROs and VOs —
including change propagation — enables us to use the term
virtual repository.

The dependencies between ROs and VOs as established us-
ing built–in mapping constructs are known to the work-
bench (the Lua/P VM): for each changed RO, it knows ex-
actly which attributes of which VOs need to be changed
and can broadcast this change efficiently. This is not true
for hand–coded mappings (using redirect). The dependen-
cies established by this kind of mapping relationship are en-
coded in the programmers code. This makes it hard for the
VM to determine when a change in the repository should
result in a mapped attribute to change its value accord-
ingly. The re–computation of redirected values is often trig-
gered by “false alarm” because the interpreter lacks detailed
knowledge about the data dependency. These excessive re–
computations cause performance penalties.

11

Providing predefined specialized constructs always comes
with the danger of arbitrariness. The question is how to
define a set of standard mappings independently of a partic-
ular application, i.e., with enough expressive power to cover
the needs of most applications. A combination of theoretical
analysis and empirical evaluation should eventually yield a
set of constructs that is satisfactory for all relevant prob-
lems. While not apt for proving completeness in a rigorous
sense, a preliminary analysis [17] indicates that the DVC
mapping constructs presented here do cover a wide range of
relevant situations.

For illustration, let us discuss the coverage of relevant situ-
ations that occur when mapping RO classes to VO classes.
In [17], similar considerations are given for the mapping of
instances, attributes and lists. Three cases are trivial: 0 : n
(new classes introduced in a connector), 1 : 1 (direct map-
ping, set equality) and n : 0 (no mapping for an RO class).
We also saw the 1 : n case in the example. Class CLASS

from the repository model is split into classes Class and
ImportedClass, which is discriminated by a class predicate
(alternatively the declared type of a reference through which
an RO is reached might also decide, which view class to use
for lifting).

In order to complete this picture for class mappings, the
only remaining situation is when several (unrelated) RO
classes, e.g., RC1 and RC2, are mapped to (merged into)
one virtual class VC (n : 1 mapping).
This case needs no special syntax, since
it can be implemented by one indirec-
tion: First, the repository classes are
mapped to corresponding view classes
(VC1, VC2). Then a supertype VC for

RC1

RC2
VC1

VC2

VC

both view classes is introduced. View classes VC1 and VC2

implement the interface of VC in terms of their repository
classes RC1 and RC2.

The mapping constructs implemented so far do not cover,
e.g., the case when a whole path in the repository class
graph (a derived association between two repository classes)
is mapped to a direct association between to view classes,
or when an object is mapped to an atomic value. These are
two examples where we would suggest the use of redirect.
In case certain patterns of redirection like that occur over
and over again, we might, however, consider adding a new
keyword as a shorthand for such stereotyped mappings in
the future. Addressing the mapping of paths with explicit
constructs is under consideration for future extensions. This
would bring forward the benefits of Adaptive Programming
[23] also for Lua/P. It would make connector code more ro-
bust w.r.t small structural changes in the repository model.

2.5 Tool integration with DVCs
Finally, let us briefly summarize the tool integration pro-
cess in the presence of DVCs. As far as the tool definition
is concerned, the requirement holds that the tool must be
developed against an expected interface where some mid-
dleware can be plugged in that encapsulates any underlying
data storage. Let us assume, that the interface of all persis-
tent objects (the tool model) is defined by means of CORBA
IDL or Java interfaces. These interfaces are part of the de-

expected interface (IDL)

stubs for CORBA or ...

PIROL proxies

Dynamic View Connector

generate

repository model (Lua/P)

program

Figure 15: Tasks of integrating a tool

liverable tool which should preferably be pre-compiled and
be pre-linked without an implementation of these interfaces.
The first step in integrating such a tool consists in provid-
ing a library of proxy classes that encapsulate all persistent
objects and in addition to delegating access requests from
the tool via middleware to the data storage, also allow to
register observers for change notifications from the middle-
ware. This step can be automated by tools such as an IDL
compiler. Similarly, we will provide a generator for PIROL
proxies (cf. Fig. 15). Deploying a tool is then a matter of
furnishing also the set of generated proxy classes for the
chosen middleware.

The requirements so far implement what we call “physical
pluggability”. A tool that is developed according to these
rules can be used with different implementations of mid-
dleware (MSG or CORBA or . . .) and thus with different
repositories or other data–stores, provided the structure of
proxy classes conforms to the concrete repository model,
which is very unlikely. In order to reconcile logical incom-
patibilities between the structure of the proxy classes and
the concrete repository model, the integration of tools now
includes an additional step. A dynamic view connector has
to be developed (cf. Fig. 15), which is the only place in
the system that knows about both the tool model and the
repository model. The connector creates a specialized view
of the repository, or, a “virtual repository”, making the tool
‘believe’ it would operate on a repository, whose schema is
identical to its expected interface. The tool will, however,
never see objects of the real repository model, but only vir-
tual objects, which simulate the expected structure and be-
havior on top of the repository model. Implementation of
a dynamic view connector requires hand crafting, but this
is confined to one module, and from todays experience we
expect this to be a task of low effort.

3. EVALUATION
Our focus has been mainly on high–level dimensions of con-
cerns involved in the “application logic” of an SEE: (1) the
basic data abstractions of the SEE (the repository) (2) the
features of an SEE (as represented by the tools), and (3)
what we called the logical integration of concerns from the
above two dimensions. Other dimensions, that do not di-
rectly contribute to the application logic but rather define
system properties, such as transaction management, concur-
rency control or distribution aspects, orthogonally apply to
all elements of the workbench interface. Most concerns in
these dimensions are already covered by the functionality of
the underlying middleware or repository and were not effec-
tively elaborated in this paper. We did, however, mention
two dimensions in the system properties category: (4) data
synchronization (implemented by the change propagation

12

mechanism) and (5) semantical integrity of repository data.
Data synchronization includes concerns such as triggering,
distributing and reacting to change notifications. In the
semantical integrity dimension, we considered the concern
of maintaining constraints over repository data by imple-
menting constraint–preserving policies as attribute guards.
Another concern in this dimension is avoidance of data re-
dundancy, which is also an issue in PIROL, but falls beyond
the scope of this paper.

Using the dimensions (1 – 5) mentioned above as our “test
bench”, in this section we discuss the design of PIROL along
the questions concerning the design space of MDSOC models
posed in the introductory section.

Q1: Specialized language support
It appears that the standard object–oriented model together
with a long–term commitment to architecture do a good job
in achieving modularity in the definitions of separated con-
cerns in the data and feature dimensions. Provided the pro-
grammer of a tool agrees on (a) declaring the expected inter-
face of the tool and (b) implementing the tool’s functionality
to this interface, the tool can be written as a stand–alone
object–oriented application. Similarly, the repository meta
model is written as a standard (certainly well–designed)
object–oriented program in Lua/P, isolated from all other
concerns. The designer of the meta–model only needs to
focus on the basic abstractions involved in the process of
software development.

On the other hand, special language support (combined with
a commitment to a well–defined system architecture) comes
quite handy for separating concerns related to system prop-
erties. Consider e.g., change propagation. Separating dif-
ferent concerns of change propagation from each other and
from the application logic was achieved by (a) having change
notification as a built–in feature of the workbench and (b) by
conformance to the multicast–based architecture of PIROL.
Triggering change notifications happens at the meta–level
(within the Lua/P interpreter) orthogonally to application
logic. The dispatching of notifications is the responsibility
of the message channel, implemented by a separate server
process that is loosely coupled to its clients — the workbench
and the tools — via the mechanism of message–pattern reg-
istration. Tools define their reaction to change notifications
by means of callbacks registered with the messaging chan-
nel. These are well–separated from other concerns, such as
tool functionality or the definition of the repository data
abstractions.

Maintaining the semantical integrity of shared data also
makes use of a special construct of Lua/P, the attribute guards,
which allows the programmer to plug additional behavior
into the meta–level semantics of attribute access. Due to
these built–in “hot spots”, the integrity preservation con-
cern can be defined well separated from the application–level
code in the policies associated with attribute guards.

So, based on an architecture suitable for the given domain,
we enriched the object–oriented model by (1) an infras-
tructure of built–in system services, that transparently ap-
ply to all requests to the workbench, (2) object–oriented
techniques for filling in the hot–spots in such system ser-

vices (e.g., tool callbacks within the mechanism of change
propagation) and (3) a special language construct (attribute
guards) to “decorate” the default semantics of attribute ac-
cess with additional behavior, as needed.

Note, that the choice for (1) would change if variability con-
cerning the system architecture were to be supported. An
example of an alternative architecture would be a “poor–
man’s” implementation, where the repository is replaced by
plain file storage, all tools were integrated to a single process
and change propagation had to be re-implemented by sim-
ple method invocations instead of the server based message
dispatching. If variability with regard to system architec-
ture is needed, dispatching change notifications would have
to be defined as an explicit concern rather than a transpar-
ent system service, so that it can be replaced by different
implementations appropriate for different architectures. It
would be pure speculation, to elaborate on the language con-
structs, that would be needed in order to define arbitrary
implementations for dispatching notifications. However, as
long as this variability is not needed, a transparent imple-
mentation of system properties can be given with less coding
effort and providing a better performance than in the more
general case.

Q2: Explicit integration
In answering this question, one has to trade off understand-
ability, flexibility, reusability against performance. Our ex-
perience shows that the integration of high–level concerns
that are involved with the application logic should be de-
fined in explicit constructs, separately from the concern def-
initions. High–level concerns will very likely be subject of
reuse and mixing their definition with integration issues hin-
ders their reusability.

To support this claim, we presented two approaches to the
definition of the “logical” integration between the core di-
mensions: features and basic data abstractions. In the first
approach, bridging data mismatches during integration was
mainly a matter of the adapter code spread around the tool’s
code. There was no distinct, separable integration layer,
with the reported negative impact on maintainability. By
extending Lua/P with DVCs, we separated the “logical” inte-
gration from tool definition which improved comprehensibil-
ity, reuse, and maintainability. The additional adaptation
layer decouples the repository and its tools in multiple ways.
First, the repository model may evolve without affecting ex-
isting tools, which are protected against these changes by
the connector. Only the connector needs to be changed.
Second, tools may be enhanced with no need to change the
repository model, as long as other tools depend on the old
model. Third, other tools may immediately benefit from the
enhanced model by also using the new connector. Fourth,
the same tool may be used to manipulate different types of
objects: plugging a tool to a set of RO classes, defines its
semantics in terms of the repository model. Different con-
figurations of the same tool may be plugged in at different
spots of the repository model providing different semantics.
Other combinations of evolution and reuse can be thought
of. All this comes with little effort: with its mostly declara-
tive style, the definition of a DVC will for most applications
be small and easy to read and maintain. The code for a
connector is a succinct specification of the required adap-

13

tation. In fact, the example presented in this paper is only
slightly modified from the result of a real case study. We are
convinced that implementing a DVC is not much additional
effort after understanding the required mapping in the first
place.

On the other hand, reusability is probably less an issue for a
considerable number of system properties. In analogy to the
above scenario of a poor–man’s version of PIROL, concern
reuse by explicit integration would imply to exchange, e.g.,
the MSG–subsystem by a third party communication service
without modifying any other concern. This would have to be
achieved by an explicit gate–way between PIROL’s compo-
nents and the new communication software. Obviously, this
kind of flexibility is even harder to achieve than pluggability
of tools. I.e., for certain integral parts of the environment
transparent integration may be more suitable.

When introducing an explicit integration layer, scalability
issues have to be considered, as well. The introduction
of DVCs in our architecture only slightly affects scalabil-
ity. This is because of the three–tier architecture, where the
workbench decouples the sessions of different users. Since
DVCs live within a workbench, and not within the reposi-
tory, only the following issues have to be investigated with
respect to scalability: the number of DVC instances within
one workbench, the number of ROs to be lifted to VOs within
a single operation (say: loading a diagram) and the com-
plexity of computations performed on a graph of VOs. Such
performance measurements are still to be carried out. How-
ever, the number of users is no issue for DVC scalability.

Q3: Binding time
The high–level concerns are bound at run–time in the cur-
rent design. A tool is bound to instances in the repository
by instantiating a connector and applying it to a root RO.
The resulting graph of virtual objects is lazily generated on
demand. Of course, a connector definition must exist which
matches the expected interface of a tool. But this definition
can be added to the workbench at any time during a running
project, which could also be seen as a run–time integration
of a new type of virtual repository.

The late binding of VOs to ROs is not paid for at the source
code level, because lifting of the sub–components of a root
ROs happens automatically as they come into the scope of
a connector. That is, the programmer never has to explic-
itly call the lift function. However, there will obviously be
impacts on performance due to (a) run–time lifting and (b)
the delegation from VOs to the appropriate ROs respectively
COs. Although we cannot for the moment back our claims
by empirical measurements, we expect delegation from a VO
to the appropriate RO resp. CO to have little impact on the
overall performance, because this delegation is hardly more
then dereferencing one link per access; the appropriate ac-
cess strategy for each declared feature is already determined
at load–time of a connector definition. This overhead can be
ignored when compared to the overhead due to inter–process
communication between tools and workbench. Dynamic lift-
ing may be more expensive especially in those cases where
the choice of the appropriate virtual class to use for lifting
depends on run–time state of the repository object to be
lifted. Analyzing the connector structure and caching lifted

objects are possible ways to reduce performance penalties.

However, there is no doubt that in answering the question
about binding time one often has to trade off flexibility
against performance. “Often” is to emphasize that in some
cases, there is no option, i.e., binding must be dynamic. One
of the arguments for runtime binding is that tool–specific
data has to be represented as first–class objects in order to
enable flexible binding cardinality, allowing attributes of an
object or graph of objects to appear simultaneously in dif-
ferent views with different values of the same property. As
already pointed out in Sect. 1, with compile–time weaving
of all partial definitions into one whole, as in [34 9], it would
be e.g., impossible to have the same class simultaneously
displayed in as many different positions, as there are UML
documents on the display that contain the class.

Another argument for dynamic binding is dynamic re-config-
urability, which implies that a tool can be replaced by an-
other, or new tools can be integrated on–the–fly, i.e., with-
out recompiling the repository. A third scenario, where dy-
namic binding is needed, is for attaching additional behavior
to repository objects, whereby several variants of the ad-
ditional behavior and the ability to dynamically exchange
these variants should be supported. For instance, we might
want to enhance certain ROs with the ability to write them-
selves out into a file, supporting several different storing
formats and the ability to dynamically choose the format
depending on the context of use.

If, however, flexible binding cardinalities or dynamic evolu-
tion are not an issue, static binding may be preferable for the
sake of performance. There are certainly cases, where bind-
ing tools at link–time would be flexible enough, provided
that integration can still be performed without access to
the tool’s source code. Link–time binding could be consid-
ered as an alternative to dynamic binding for all those cases
where only one connector of each connector type would ever
be created for a given graph of repository objects and also
objects are mapped only on a 1:1 basis. This could be seen
as a performance optimization of our model, but it may also
bloat the underlying database. Object fields from all views
of all relevant tools would have to be allocated for all ob-
jects of a given type, even if most of these objects may never
actually appear within certain views of certain tools.

Q4: Binding granularity
Our experience with PIROL shows that it is important to
support concern binding at different levels: features, classes,
associations and even whole collaborations of classes. We
emphasize support for binding at the level of collaborations
of classes, since this has been ignored by most of the MD-
SOC models so far. Before introducing DVCs, PIROL’s de-
sign did not support binding at the level of a set of collab-
orating classes. Our experience taught us that supporting
this level is crucial in real–life complex systems. The idea
is that within an integrated environment mapping different
context specific definitions to some shared abstractions will
very likely not happen at the level of isolated elements.

The adaptation process has, in general, to satisfy constraints
such as “if the abstraction A has to be adapted to a view–
specific definition A’ then the abstraction B associated with

14

A has to be adapted to a view–specific definition B’, with
the A–B relation being mapped to some A’–B’ relation”. If
there is no language support for gluing at the level of class
graphs as provided by DVCs (and connectors, respectively
adapters in [28 29]), these constraints have to be manually
programmed mixed within the code for the A–to–A’, respec-
tively B–to–B’ mappings. This was basically the approach in
the first design of PIROL, where each adapter object within a
tool implementation was responsible for triggering the adap-
tation of all relevant parts of its tool object, once the tool
object was adapted itself (cf. Sect. 1.3). This approach is
error–prone, since there is no guarantee that constraints are
properly maintained. Furthermore, the gluing code becomes
tangled, hard to read and fragile with respect to changes in
the structural relationships.

With DVCs, a whole graph of mutually referring view classes
is bound to a graph of mutually referring repository classes.
Of course, this mapping is defined in terms of mappings
between the lower–level constructs. A connector instance
defines an encapsulation of an object graph ensuring that
all objects reachable within a connector are lifted to the ap-
propriate view classes defined in the connector. In a similar
vein, the advantages of supporting extension at the level of
mutually recursive types, i.e., types that refer to each other,
such as A and B in previous paragraph, has been acknowl-
edged in [3]. In [3] inheritance is used as the extension mech-
anism for defining mutually recursive extensions of the base
types (corresponding to A’ and B’ in our example scenario).
The adaptation of repository classes by view classes actu-
ally follows the same pattern, except for using aggregation
rather than inheritance as the composition technique.

Q5: Binding cardinality
In our design binding cardinality is flexible in that no restric-
tions exist on the number and type of connectors instanti-
ated for the same or overlapping set of base ROs. For the re-
verse case uniqueness is of course indispensable: each graph
of VOs is uniquely bound to a graph of ROs. When focusing
on the elements within a connector, the flexibility is given
for having one RO playing different roles even within the
same virtual repository. Flexible cardinalities were already
supported by the first design of PIROL: conceptual objects
(COs) defined views, that could be instantiated multiply for
the same or overlapping sets of base objects. This was, how-
ever, lacking an elegant and type safe encapsulation.

Lessons learned
Within the given context of designing an integrated software
engineering environment, we took a mixed approach to MD-
SOC by combining the advantages of (a) a well–designed
architecture for a generic “wiring” mechanism between dif-
ferent concerns involved in the environment with (b) the
strength of a hybrid domain–specific language, that

1. builds upon standard object oriented notions,

2. supports certain system properties crucial for the do-
main transparently as built–in features, (e.g., persis-
tence, data synchronization), while providing some hot
spots, where client code may plug into these system
services (e.g., callbacks for handling change notifica-
tions),

3. provides specialized constructs for allowing the pro-
grammer to influence the semantics of the language,
which come handy for defining certain concerns of the
system property dimension (e.g., attribute guards as
policies for semantical data integrity), and

4. introduces a high–level construct for the dimension of
integrating the data and feature dimensions.

Thus, our approach indeed combines features from several
MDSOC models. With PCA and SOP approaches it shares
the explicit constructs for defining integration, as well as
the use of the standard object-oriented model for the def-
inition of high-level concerns. Additional constructs such
as guarded attributes resemble the advice construct of As-
pectJ, while still other issues like change propagation are
mainly solved by architectural design. In order for such a
“supermarket” approach (“buy what you need”) to work,
it is desirable to have (1) a common foundation of MDSOC
techniques (probably based on a language meta–model as we
mentioned in our introduction), (2) a catalogue of questions
to guide the process of selecting MDSOC techniques, (3) a
language framework which allows to flexibly integrate the
selected techniques into an operational programming infras-
tructure. At the experimental stage of applying MDSOC
to PIROL, Lua/P (and its host language Lua [19]) proved to
be well suited for this kind of evolutionary domain–specific
language extension. This is due to its dynamic meta–level
features that they share with other dynamic languages such
a Smalltalk [11] or Self [50]. We can envision toolkits for
modular language construction, that provide the power of a
specialized combination of MDSOC techniques even to or-
dinary development projects.

Another insight form our case study that might be valuable
for the MDSOC community concerns the issue of a distin-
guished “base” concern. Currently, there is no agreement in
the MDSOC community, as whether there is a “base” con-
cern that plays a distinguished role for the composition or
not. The Xerox PARC approach to MDSOC [22] seems to
favor the “base” concern idea, while other approaches [49
29] tend to consider all concerns as independent. As far as
our experience with the design of PIROL tells, the answer
seems to be in the middle. It appears that, at least in the
context of integrated environments based on the repository
architectural style, the data abstraction dimension indeed
plays a distinguished role. All other concerns in one way
or other relate to this dimension, but it is important that
other concerns can still be developed independently. It is
again the DVC layer that makes explicit, by which mapping
other concerns relate to the base dimension. Change propa-
gation, e.g., is coordinated at the level of RO attributes, but
is automatically mapped to the concerns of tools by DVCs.

Our experience also shows the advantages of expressing the
“base” concern in a domain–specific language, which trans-
parently supports certain (for the domain important) system
properties as built–in features complemented with explicit
support for expressing other system properties. This level
of specialized support is not needed for the implementation
of tools as kind of “secondary” concerns.

Finally, the improvement in modularity as introduced by
DVCs gives an encouraging example of how any component

15

based system can be built with two seemingly contradictory
goals reconciled: The flexible decoupling of components to
be integrated a–posteriori and the tight integration of com-
ponents that as an ensemble perform a complex set of func-
tionalities.

4. RELATED WORK
Research about integrating software engineering tools al-
ways had a focus on supporting multiple views. As an early
example, Garlan’s [9] basic views can in fact be seen as an
anticipation of subject–oriented programming: the actual
model of a central database is an automatic merge of the re-
quired models of different tools. The mechanisms supported
by basic views correspond to our uses and adds clauses. Ob-
jects are always manipulated within the context of a given
view. This, in a way, resembles our way to identify a virtual
object as the pair (roid x coid), but Garlan’s views are
only identified by the view type, since basic views cannot be
instantiated. With DVCs on the other hand, view instanti-
ation is an essential technique. Furthermore, Garlan’s dy-
namic views generalize over our filter construct, supporting
a universal query language, but these views are not updat-
able, only the objects contained in such a view (objects of
some basic type) are updatable. Dynamic view connectors
on the other hand are carefully designed to ensure that all
mappings are reversible yielding views that cannot be dis-
tinguished from collaborations of base objects.

The following two themes can also be found in many suc-
cessor approaches concerning repositories for SEEs: (a) the
global schema can be combined from different partial schema
definitions and (b) the view on which a tool operates is de-
fined as some kind of filter on shared data. PCTE [37], the
repository used in PIROL, allows a “schema definition set” to
extend existing object types (a). Tool views are defined by
a “working schema”, that simply enumerates schema def-
inition sets, such that only values (objects, links and at-
tributes) defined in these definitions are visible to the tool
(b). The latter technique has been used, e.g., to implement
generic tools [5]. These tools are configured by providing
a working schema (filter) and exploit meta data (i.e., type
information) for traversing and displaying the given view.

Sullivan and Notkin [48] very clearly state the problems with
software evolution in an integrated environment. They show
the shortcomings of three basic designs for integrated envi-
ronments: (a) employing explicit invocations between in-
dependent tools, (b) employing implicit invocation via an
event model, and (c) providing an explicit component that
encapsulates the individual tools and realizes their integra-
tion relationships. Their approach combines the advantages
of the second and third basic designs, in which (a) the inte-
gration relationship is modeled in an explicit unit, the medi-
ator, and (b) individual tools are connected to an integration
unit via implicit invocation. The design of PIROL presented
here can be seen as an important improvement on the medi-
ators approach to integrated environments. In the first de-
sign of PIROL presented in Sect. 1.2, it is the workbench that
plays the role of a mediator and implements the integration
relations between individual tools which communicate with
the workbench via implicit invocation. In fact, even this first
design of PIROL is an improvement on mediators because it
(a) allows tools to share single copies of overlapping defi-

nitions (distinction between ROs and COs), which multiply
exist in mediators, without, however, sacrificing tool inde-
pendence as in [9], and (b) deals with datatype mismatches
(through the adapters) which are completely ignored in [48]:
their implicit invocation mechanism requires that events and
methods associated with them conform on their signatures.

In the GoodStep project[12], O2Views[43] was developed as
an extension of the OODBMS O2. Similar to our approach,
objects in a view may “inherit” features from their base
class by delegation. Views are again filters on shared data,
which are in this case expressed as database queries. How-
ever, a view cannot add values, that are not present in the
base (i.e., no schema combination). The extension (the set
of contained objects) of a view has to be recalculated by
an explicit command and updating through a view is not
consistently solved. It follows that objects in a view behave
noticeably different from base objects and the generation
of a “virtual base” (i.e., a real base as seen through a view)
from a base remains a heavy weight operation that prohibits
fine grained integration. With its support for materializing
a virtual base, O2Views aims at flexible schema evolution,
which has also been pursued in different projects for stepwise
integration of new tools.

The OODBMS ObjectStore[33] allows to define “transformer
functions” for performing data modification in the course of
schema evolution. These directly correspond to the transfor-
mations implemented with our accept construct as a means
for lazily adapting objects to new types.

All these approaches rely on the assumption, that at any
given point in time, there exists one global repository schema
as a union of all involved partial schemas. Each object has
exactly one identity and the overall structure of all views
is either identical (PCTE) or diverging structures are gen-
erated as second–class entities, that are not fully updat-
able (O2). If tools are to be decoupled completely, as it is
needed for a-posteriori integration, it is necessary to allow
mismatching schemas to exist simultaneously, which in turn
requires on–line bidirectional translation between different
structures. This is a major novelty of dynamic view connec-
tors.

Also, most repository data models do not allow view objects
of the same base object to have different values for a given
property (context dependent duplication of attributes). This
is needed, e.g., for attaching different position values to a
base object that appears in different diagrams of the same
type. Surprisingly, already PCTE provides an elegant so-
lution to this. A diagram can be modeled as an object
whose links to contained symbols (base objects) can carry
attributes that are specific to a base object within the con-
text of a given diagram. Unfortunately, link attributes have
no direct mapping to object oriented programming languages.
Thus, a tool implementor is again faced with the problem
of translating this information into the given programming
language. In fact, link attributes serve as a low level imple-
mentation technique for added attributes of VOs in PIROL.
Consequently combining the concept of role objects with
repository views is a contribution of dynamic view connec-
tors.

16

Finally, older approaches like PCTE work on pure data ob-
jects. Dynamic view connectors naturally integrate methods
into the concepts of views, roles and collaborations. Not
only can views access the methods of the repository model;
this also allows to implement (certain services of) tools in
Lua/P, granting for execution in the workbench. Functions
implemented in Lua/P can be invoked by any tool in the en-
vironment, and thus directly contribute to the set of services
which the workbench provides to all tools.

More recent work on SEEs pays less attention on view def-
initions, but aims at optimizing other aspects. Most im-
portantly, performance and reuse of existing (monolithic)
tools (commonly bringing their own data stores) has forced
many authors to compromises regarding their initial con-
cepts. E.g., Reiss [41] describes a system called DESERT
with many ideas that are similar to PIROL. Yet, only two
fairly weak concepts are included for integrating tools with
structural mismatches: at the level of control integration a
message mapper interprets simple rules of translating mes-
sages. Translation only allows renaming and rearranging of
message arguments. Secondly, for the sake of data integra-
tion, “virtual files” may be defined as a collection of “frag-
ments” (identifiable portions of files). In this concept, data
integration is based on plain files containing source code,
rather than on a repository with a fine–grained meta model.
In source code centric environments, a tight semantical inte-
gration is much harder to achieve across development phases
and notations. While approaches that build on existing com-
plex tools provide a good amount of integrated functionality
to the developer, our approach is more visionary, as it clearly
defines the conditions, under which third party tools can be
integrated much more efficiently in terms of (a) a greater
variety of tools that can be integrated (not only those, that
work on source code files), (b) a closer (semantical) integra-
tion across notations, and (c) greater ease of integration by
means of a succinct connector specification.

Apart from research in the domain of SEEs, several general
purpose concepts have more or less influenced the develop-
ment of dynamic view connectors.

Views as a concept are also used in requirement analysis
methods. For instance, in [32] ViewPoints are used to model
different analysis artifacts, each specifying partial require-
ments for a system to be developed. ViewPoints also in-
clude so–called inter–ViewPoint rules expressing the rela-
tionships between separated requirement slices. These rules
are checked for consistency during the integration phase and
eventually a transformation is performed to handle inconsis-
tencies. This transformation has the flavor of DVCs but the
purposes are quite different: consistency checking of partial
overlapping requirements versus integration of independent
components.

The work on collaboration–based design [18 51 46 28] focuses
on developing language support for defining collaborations
between several objects separately of the static object model
of the system. Our work is related to this research in that we
allow tools — which can be seen as large–scale collaborations
— to be written separately of the static structure of the
repository objects that are involved in the collaboration.

A key theme of the work described in this paper is separa-
tion of concerns to avoid software tangling. This is also the
motivation behind both aspect oriented programming [22]
and HyperSpaces [49]. Our work developed special–purpose
language technology for supporting separation of some con-
cerns in SEEs, and applies it to the design of a real system.
Another case study for separation of concerns can be found
in [20], where AOP is applied to the design of a web–based
learning system. Separating structural and behavioral as-
pects of an object–oriented system is the focus of the adap-
tive programming [23] approach. The static structure of a
system is defined in a class dictionary — essentially a textual
representation of the class graph. The behavioral aspects
are written in terms of so–called traversal strategy specifi-
cations — essentially succinct descriptions of paths in the
class graph — and do not embed detailed knowledge about
the structure. Behavior written in this way is more robust
against structural changes.

Several works in the area of object–oriented language de-
sign on roles [13], composition filters [1], context objects [44],
variation–oriented programming [27], etc., also propose lan-
guage support for separating the definition of different as-
pects. However, they focus on the separation of concerns at
the level of a single, isolated object, and ignore important
issues that need to be addressed when dealing with sets of
collaborating objects.

Garlan et al. [10] identify categories of mismatches that
occur when integrating components into a system. Their
analysis of the “nature of connectors” with sub-issue “data
model” comes closest to this work. Their focus is, however,
much more technical: their example addresses the issue of
inter language working, which is given for free in PIROL by
decoupling components by means of a language independent
communication layer. The components that were integrated
in the Aesop system were generic components, so no concrete
data models, that had to be reconciled, existed.

DeLine’s flexible packaging [6] separates a component core
functionality from its interaction with a certain architec-
tural style or component interface standard (such as pipes
and filters, ActiveX, or relational databases) within a cer-
tain context of use into two separate modules: the ware,
respectively the packaging description. Flexible packaging
helps to automate the build process of integrated compo-
nents including all supplementary resources needed for this
purpose. DeLine’s wares and packaging description roughly
correspond to tools, respectively repository meta model in
PIROL with the meta model seen as one particular packaging
description for the underlying PCTE. DeLine also recognizes
that name, datatype, order, and aggregation mismatches be-
tween the packager and the ware should be dealt with and
exploits explicit maps for this purpose. Yet, the mapping
language is very primitive including, roughly speaking, only
a restricted version of our redirect construct for primitive
data types. Bidirectional conversions are not covered, nor
are aggregation mismatches, i.e., mismatches concerning the
structure of data. Automatic conversion of graphs of user
defined data types are not supported at all. That is, as com-
pared to the succinct and declarative nature of DVCs map-
ping in the flexible packaging approach is “manual”, which
might turn out to be a tedious and and hard to get right job

17

in a real–life setting. Another difference concerns binding
time. In the flexible packaging approach fix-up code from
maps is inlined at compile–time. As the result, only a 1:1
binding cardinality is possible.

There is an analogy between DVCs and the use of deploy-
ment tools to map object (bean) attributes to data in a (rela-
tional or object) database in the EJB component model [30].
Due to the explicit deployment process, a bean’s definition
contains only the business logic, free of integration issues,
and can for this reason be reused with different databases.
This is similar to the decoupling of tool definitions from the
repository model achieved with the introduction of DVCs,
protecting tools against changes in the repository. DVCs are
higher–level and allow for declarative specification of more
complex mappings. Furthermore, by being first–class enti-
ties, DVCs can be reused with different versions of the same
tool or even with different tools, eventually by being layered
on top of each other.

5. SUMMARY AND FUTURE WORK
In this paper we presented our experience with applying
multidimensional separation of concerns to a software engi-
neering environment. The main focus of the paper was on
requirements that this domain poses on the design space of
models for MDSOC. By comparing two different designs of
our system, we showed the importance of separating integra-
tion issues from the implementation of the individual con-
cerns. We presented a model in which integration issues are
encapsulated into first–class connector objects and indicated
how this facilitates the understandability, maintenance and
evolution of the system. Furthermore, we identified as cru-
cial features for SEEs: (a) the postponement of the binding
time of concerns until runtime — made possible by having
connectors as first–class objects, (b) supporting the binding
granularity of concerns at the level of collaborating objects,
and (c) enabling flexible binding cardinalities with no re-
strictions on the number of connectors instantiated for the
same or overlapping sets of objects. These features en-
able flexible configurability of SEEs including distribution
across machine boundaries and a-posteriori integration of
third party tools without source code modifications.

In the future, it would be interesting to explore more com-
plex situations of mismatches in models, in order to gain
a better understanding of what cannot be bridged by our
connectors and extend the usefulness of dynamic view con-
nectors towards even more complex situations. This may
eventually lead to additional mapping constructs, of which
the mapping of paths à la AP has already been mentioned.
Furthermore, we plan to generalize over different techniques
for “physical pluggability” (i.e., middleware like CORBA),
in order to show how the concept of “logical pluggability”
can also be applied to these techniques, in order to obtain a
fully pluggable component infrastructure.

6. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers
for their very helpful comments.

7. REFERENCES
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting Object Interactions using
Composition-Filters. In Object-Based Distributed Pro-
cessing, LNCS 791, pp. 152–184, 1993. 17

[2] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison Wesley, 1997. 6

[3] Kim B. Bruce, Martin Odersky, and Philip Wadler.
A statically safe alternative to virtual types. In Eu-
ropean Conference on Object-Oriented Programming
(ECOOP), Brussels, July 1998. 15

[4] Clemens Czyperski. Component Software, Beyond
Object-Oriented Programming. Addison-Wesley, 1998.
4

[5] D. Däberitz and U. Kelter. Rapid Prototyping of
Graphical Editors in an open SEE. In Proc. of
7th Conference on Software Engineering Environments
(SEE‘95), pp. 61–72. IEEE Computer Society Press,
1995. 16

[6] R. DeLine. Avoiding Packaging Mismatch with Flexi-
ble Packaging. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99), 1999.
17

[7] E. W. Dijkstra. A Discipline of Programming. Prentice-
Hall, 1976. 1

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns - Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995. 6

[9] D. Garlan. Views for Tools in Integrated Environments.
PhD Thesis, Carnegie Mellon University, May 1987. 5,
14, 16

[10] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
Mismatch, or, Why it’s Hard to Build Systems out of
Existing Parts. In Proceedings of the 17th Internation
Conference on Software Engineering (ICSE ’95), pp.
179–185, April 1995. 17

[11] A. Goldberg and D. Robson. Smalltalk 80: The Lan-
guage and its Implementation. Addison-Wesley, 1983.
15

[12] The GoodStep Team. The GOODSTEP Project: Gen-
eral Object-Oriented Database for Software Engineer-
ing Processes. In Proc. of the 1st Asian Pacific Software
Engineering Conf, pp. 10–19. IEEE Computer Society
Press, 1994. 16

[13] G. Gottlob, M. Schrefl, and B. Roeck. Extending
Object-Oriented Systems with Roles. ACM Transac-
tions on Information Systems, 14(3):268–296, 1996. 17

[14] B. Groth, S. Herrmann, S. Jähnichen, and W. Koch.
Project Integrating Reference Object Library (PIROL):
An Object–Oriented Multiple–View SEE. In Proc. of
7th Conference on Software Engineering Environments
(SEE ‘95), pp. 184–193, IEEE Computer Society Press,
Apr. 1995. 3

18

[15] W. Harrison and H. Ossher. Subject-Oriented Pro-
gramming: a Critique of Pure Objects. In Proceedings
of ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’93),
Sigplan Notices 28(10), pp. 411–428, 1993. 1, 2

[16] S. Herrmann. Lua/P – A Repository Language for Flex-
ible Software Engineering Environments. In Proc. of
The Second International Symposium on Constructing
Software Engineering Tools, pp. 78–86, ISBN 0 86418
725 4, 2000. 3, 5

[17] S. Herrmann and M. Mezini.Dynamic View Connectors,
http://pirol.cs.tu-berlin.de/papers/DVC.pdf,
Technical Report, Technical University of Berlin, 2000.
12

[18] I. Holland. The Design and Representation of Object-
Oriented Components. PhD Thesis, Northeastern Uni-
versity, Computer Science, 1993. 1, 17

[19] R. Ierusalimschy, L. H. de Figueiredo, and W. Ce-
les, “Lua—an extensible extension language,” Software:
Practice and Experience, 26(6):635–652, 1996. 15

[20] M. Kersten and G. Murphy. Atlas: A Case Study in
Building a Web-Based Learning Environment Using
Aspect-Oriented Programming. In Proeedings of ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’99), Sigplan
Notices 34(10):340–352, 1999. 17

[21] G. Kiczales, J. des Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. The MIT Press, 1991.
1

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C.V. Lopes, J.M. Loingtier, and J. Irwin. Aspect
Oriented Programming. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP
‘97), LNCS 1241, pp. 220–243, 1997. 1, 15, 17

[23] K. Lieberherr. Adaptive Programming: the Demeter
Method. PWS Publishing Company, 1996. 12, 17

[24] C. Lopes. D: A Language Framework for Distributed
Programming. PhD Thesis, Northeastern University,
Computer Science, Nov. 1997. 2

[25] P. Maes. Concepts and Experiments in Computa-
tional Reflection. In Proceedings of ACM Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’87), Sigplan Notices,
22(12):147–155, 1987. 1

[26] J. McAffer. Meta-Level Programming with Coda. In
Proceedings of European Conference on Object-Oriented
Programming (ECOOP ’95), LNCS 952, pp. 190–241,
Springer Verlag, 1995. 1

[27] M. Mezini. Variational Object-Oriented Programming
Beyond Classes and Inheritance. Kluwer Academic
Publisher, 1998. 1, 17

[28] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play
Components for evolutionary software development. In
Proceedings of ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications
(OOPSLA ’98), Sigplan Notices, 33(10):97–116, 1998.
1, 8, 15, 17

[29] M. Mezini, L. Seiter, and K. Lieberherr. Component
Integration with Pluggable Composite Adapters. In M.
Aksit (ed.) Software Architecture and Component Tech-
nology: State of the Art in Research and Industry,
Kluwer Academic Publishers, 2000. 2, 8, 15

[30] R. Monson-Haefel. Enterprise Java Beans. O’Reilly &
Associates, Inc, 1999. 18

[31] A. Nordwig. Entwicklung einer Notation und eines
grafischen Editors für den objektorientierten Entwurf
hybrider Systeme. Master’s Thesis, TU Berlin, 1997.
4, 5

[32] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Frame-
work for Expressing the Relationships Between Multi-
ple Views in Requirements Specification. IEEE Trans-
actions on Software Engineering, 20(10):760–773, Oct.
1994. 17

[33] Object Design, Inc, Burlington, MA. ObjectStore Ad-
vanced C++ API User Guide, March 1998. 16

[34] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and
V. Kruskal. Specifying Subject-Oriented Composition.
Theory and Practice of Object Systems, 2(3):179–202,
1996. 5, 14

[35] PARC Xerox, available from http://aspectj.org. As-
pectJ Language Specification, Aug 1999. 2

[36] D. L. Parnas. On the Criteria to be Used in Decompos-
ing Systems in Modules. Communications of the ACM,
15(12), 1972. 1

[37] ISO/IEC 13719-1: Portable Common Tool Environ-
ment (PCTE). Abstract Specification, International
Organization for Standardization (ISO), 1995. 16

[38] PIROL Web-page. http://pirol.cs.tu-berlin.de. 3

[39] T. Reenskaug, E. P. Andersen, A. J. Berre, A. Hurlen,
A. Landmark, O. A. Lehne, E. Nordhagen, E. Ness-
Ulseth, G. Oftedal, A. L. Skaar, and P. Stenslet.
OORASS: Seamless Support for the Creation and
Maintenance of Object Oriented Systems. Journal of
Object-Oriented Programming, Oct. 1992. 1

[40] S. P. Reiss. Connecting Tools Using Message Passing
in the FIELD Environment. IEEE Software, 7(4):57–
66, July 1990. 3

[41] S. P. Reiss. The Desert Environment. ACM Trans-
actions on Software Engineering and Methodology,
8(4):297–342, Oct. 1999. 17

[42] J. Richardson and P. Schwarz. Aspects: Extending Ob-
jects to Support Multiple, Independent Roles. In Pro-
ceedings of the 1991 ACM SIGMOD International Con-
ference on Management of Data, 1991. 2, 7

[43] C. Santos, S. Delobel, and S. Abiteboul. Virtual
Schemas and Bases. In Proceedings of the International
Conference on Extending Database Technology, LNCS
779, 1994. 16

19

[44] L. Seiter, J. Palsberg, and K. Lieberherr. Evolution of
Object Behavior using Context Relations. IEEE Trans-
actions on Software Engineering, 24(1):79–92, Jan.
1998. 17

[45] M. Shaw and D. Garlan. Software Architecture: Per-
spectives of an Emerging Discipline. Prentice Hall,
1996. 2, 3

[46] Y. Smaragdakis and D. Batory. Implementing Layered
Designs with Mixin Layers. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP
’98), LNCS 1445, pp. 550–570, Springer Verlag, 1998.
1, 17

[47] M. Stefik, D. Bobrow, and K. Kahn. Integrating Access-
Oriented Programming into a Multiparadigm Environ-
ment. IEEE Software, 3(1):10–18, Jan. 1986. 5

[48] K. Sullivan and D. Notkin. Reconciling Environment
Integration and Software Evolution. ACM Transactions
on Software Engineering and Methodology, 1(3):229–
268, 1992. 1, 3, 7, 16

[49] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N
degrees of Separation: Multi-Dimensional Separation
of Concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99), 1999.
1, 15, 17

[50] D. Ungar and R. Smith. Self: The power of simplicity.
In Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ’87), Sigplan Notices, 22(12):227–242, 1987.
15

[51] M. VanHilst and D. Notkin. Using Role Components
to Implement Collaboration-Based Designs. In Proceed-
ings of ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA
’96), Sigplan Notices, 31(10):359–369, 1996. 1, 17

[52] R.J. Wieringa and W. de Jonge. Object Identifiers,
Keys, and Surrogates. Theory and Practice of Object
Systems, 1(2):101–114, 1995. 7

20

	1 First design of the SEE PIROL
	1.1 Achieving ``physical'' independence
	1.2 Striving for ``logical'' independence
	1.3 Drawbacks of the first design
	1.4 Summary so far

	2 DYNAMIC VIEW CONNECTORS
	2.1 The structure of virtual repositories
	2.2 Mapping constructs
	2.3 Repository, view, and connector objects
	2.4 Hand coded mappings versus specialized constructs
	2.5 Tool integration with DVCs

	3 Evaluation
	4 Related Work
	5 Summary and Future Work
	6 ACKNOWLEDGMENTS
	7 REFERENCES

