
On Using Metrics in the Evaluation of Aspect-Oriented
Programs and Designs

Katharina Mehner∗
Software Engineering Group
Technical University of Berlin

Germany

mehner@cs.tu-berlin.de

ABSTRACT
Metrics are an important technique in quantifying desirable
software and software development characteristics of aspect-
oriented software development (AOSD). Currently, metrics
proposed for AOSD have rarely been validated. We give an
overview on the necessary steps to validate definitions and
applications of metrics. We also compare definitions for pro-
posed metrics.

1. INTRODUCTION
In order to study the impact of aspect-oriented software de-
velopment (AOSD) on evolution one has to study its impact
on software characteristics such as evolvability, maintain-
ability, understandability, and quality. To evaluate these
characteristics not only qualitative but also quantitative tech-
niques are of interest.

The key question is how we can quantify when applying
AOSD is beneficial. Metrics are an important techique in
quantifying software and software development characteris-
tics. However, metrics have to be used knowledgeably and
carefully. Theoretical and empirical validation of metrics
and of their relation to software attributes is a cumbersome
and long process. It is of paramount importance that we val-
idate the utility of metrics we use in order to enable others
to use them, too. Until now, the metrics used and proposed
for AOSD are rarely validated. It is not sufficient to prove
their definitions correct but also their usefulness to describe
software characteristics has to be validated. In most cases,
this can only be achieved through controlled experiments
or through analysing large amounts of data, e.g., from case
studies. In both cases, statistical evaluations are a key tech-
nique to examine hypotheses.

In the remainder of this position paper, we first make our
problem statement more concrete. We give an overview on
the underlying theory of metrics and their validation. We fo-
cus on product metrics but much of what will be said equally
applies to process, resource, or project metrics. Here, we
cannot provide a thorough theoretical discussion but we
want to raise the level of awareness concerning the issues
involved in using metrics. We then discuss and compare
some concrete metric examples, which are often influenced
by OO metrics. We conclude by calling for more empirical
research in relation with metrics in AOSD.
∗The author has been supported by the German Fed-
eral Ministry for Education and Research under the grant
01ISC04A (Project TOPPrax).

2. PROBLEM STATEMENT
The benefit of AOSD is often studied in two ways. One
is the comparison with an OO software, which is already
existing or which sometimes is developed in paralled. The
other one is the independent evaluation of AOSD, often by
assessing evolution scenarios.

In both cases, the evaluation can employ design and pro-
gram metrics to support and to quantify their observations.
It has already noted by Chidamber and Kemerer that be-
cause of the abstractions introduced in OO, one can distin-
guish between design and code metrics [4]. The benefit of
this distinction is that design metrics, although applicable
also to code, can already be applied to the design when the
coding has not yet begun. Apart from the difference, the
validation requirements are the same. In the following, we
discuss design and program metrics together. As already
mentioned in the introduction, validation is twofold.

The theoretical or internal validation addresses the proper
definition of a metric and guarantees that a metric fulfils
generally accepted (axiomatic) properties (for an overview
see [5]). Often, metrics are defined using the representa-
tional theory of measurement. In this theory, measurement
is regarded as ”the correlation of numbers with entities that
are not numbers”. For an empirical attribute, there should
be an empirical observation of a relation in order to consider
defining a metric. Then one can try to establish a map-
ping to a numerical presentation which preserves empirical
relations. To ensure preservation of relations and proper
definition a number of axioms or properties have to be ful-
filled [5]. Using this method, it can be avoided that for a
metric we desperately seek an empirical counterpart. There
exist competing and sometimes contradictory sets of axioms
or properties for validating metric definitions, for instance
the axioms by Weyuker [12] or the validation framework by
Kitchenham et al. [8].

The empirical or external validation of a metric addresses
its utility in describing desirable properties or predicting de-
sirable properties of software (for an overview see [5]). For a
metric to be useful in assessing a software product or process
quality, i.e., a characteristic, we need a validation that shows
that this metric has a de facto influence on a characteristic
or that it serves in predicting characteristics of a process.
Such a cause-effect relation can not be validated by merely
statistically proving a correlation, but a correlation can be
an indicator as to what should be examined. Instead, an ex-

1



periment with a falsifiable hypothesis has to be carried out,
or data gathered from case studies or real projects have to
be evaluated. Empirical validation thus can be based either
on controlled experiments or on case studies which produce
enough data or data collected from real projects. The use
of statistical tests is helpful to discover correlations between
variables of controlled experiment [8, 5, 3].

Empirical validation is also required when a quality model
is used to define relationships between metrics and software
characteristics. For instance, the Goal-Question-Metric (GQM)
model is used to identify what must be measured in order
to answer the question from which the goal of an empirical
study can be determined [2]. This model helps to define
and select appropriate metrics. However, especially the re-
lation of the questions to the metrics has to be empirically
validated for each new model derived.

Given these steps for validating metrics, the state-of-the-
art in metrics for AOSD can be assessed. Metrics related
to desirable design and program characteristics have been
proposed amongst others by Lopes [9], Zhao [14], Garcia
[10], and Ceccato [11]. Individual examples therof will be
shortly discussed in Sect. 3. The theoretical validation has
only been addressed in some of these publications. Empiri-
cal validation is even harder to achieve and has been rarely
addressed. The research by [10] has included an empirical
validation which indicates the usefulness of the proposed
metrics through two case studies. This is a first step to-
wards an empirical validation of the metrics. The authors
acknowledge that this does not yet provide a complete vali-
dation. It would be desirable to accomplish their studies by
planned, controlled experiments to validate their hypothe-
ses. Note that controlled experiments in AOSD have been
used to gather qualitative data as in [7, 1].

Some of these approaches use metrics in the comparison of
AO and OO design. Here, the challenge is to validate that
metrics which have been extended from OO to AO per-
mit the direct comparison. Without empirical validation
it is particularly dangerous to interpret values of metrics
as better or worse than other values with respect to soft-
ware characteristics. One has to be careful with taking such
statements for granted.

3. METRICS FOR AOSD
The examples discussed in the following present by no means
a complete overview. We have selected them to show that
different ideas exist on how to define AOSD metrics.

For defining AOSD metrics it is obvious to build on exist-
ing general software metrics and especially on existing OO
metrics [4]. Thus, it is a key issue, how to extend metrics
and how to define corresponding metrics besides defining
completely new metrics. Most existing metrics cannot be
applied straightforwardly to aspect-oriented software, since
AOSD introduces new abstractions and new composition
techniques. Consequently, there are new kinds of coupling
and cohesion. Not only new metrics but also extended met-
rics to cover a new programming language have to be vali-
dated.

Some characteristics and attributes have been widely ac-

knowledged as playing a key role in the evolability of soft-
ware, both for OO and AO, such as size, coupling, cohe-
sion and separation of concern, and because they are obvi-
ously related to aspect-oriented modularisation of crosscut-
ting concerns. We can observe two approaches with respect
to defining metrics for these characteristics, extending met-
rics and defining new metrics. Here we shortly sketch the
different ideas behind the two approaches.

Separation of concern metrics
Separation of concern metrics are new ones. In [9] the first
separation of concern metrics were proposed. In [10, 6] these
metrics have been refined. Until now, these metrics requires
manually identifying concerns.

Coupling metrics
Coupling is interesting because it is treated both ways. Ini-
tially, the coupling-between-objects metric [4] is defined as
counting all classes (once) to which a class is coupled. This
is in turn defined by counting the classes of the objects on
which a given object/class ”acts upon”. This refers to ac-
cess or method calls on instance variables, local variables or
formal parameters. Although the metric relies on different
kinds of variables or parameter, essentially the same kind of
access is counted, i.e., that an instance of another class is
accessed via a reference and potentially via its attributes or
methods. Also note that in the OO context, high numbers
of coupling are considered as undesirable.

In [13] no new metrics are defined but the preservation of the
existing definitions is assumed. They focus on the effects as-
pects typically have on these metrics, e.g., they discuss that
OO coupling may be decreased. Thus, their work implies
the necessity to be able to understand the OO part on its
own, e.g. by preserving OO metrics.

In [10, 6], this original metric is extended to cover also cou-
pling between aspects. This means that the metric still
counts the same kinds of coupling as before, i.e., coupling
to classes used in declarations of attributes, parameters and
local variables, but now includes declarations that belong to
aspects.

Other authors [11] have decided to provide separate metrics
for the new kinds of couplings found in AO. The metric can
be used as an indicator for different effects of the different
kinds of coupling in a validation experiment. Although the
different metrics mentioned so far, coupling for OO and cou-
pling for AO, are all related to coupling, it should be avoided
to compare them directly as they describe coupling related
to two different paradigms.

Cohesion metrics
Cohesion has been addressed in both ways, too. [14] specif-
ically looks at a new way for defining cohesion. Others ex-
tend existing metrics such as lack-of-cohesion in methods
straightforwardly to advice [10].

Size metrics
Size metrics are often critized as being dependent on pro-
gramming styles and being too simple. Size itself has an
empirical counterpart in the physical length though there

2



are numerous ways to define it, e.g., LOC. From this view-
point it might be admissable to count a pointcut as a code
line. In [10, 6], experience with an extended LOC metric
has been gathered.

Size metrics can point to the fact that duplicated code is
avoided. The question is, if LOC is a good indicator for
maintainability and reusability when comparing AO with
OO. Avoiding duplicate code might be achieved by writing
difficult-to-maintain pointcuts.

4. CONCLUSION
This paper gave a short overview on the necessary steps
for validating metrics that are to be used in an evaluation
process. These steps are well-known in software engineering.
The current state-of-the-art in AOSD is that one has started
to work on the definition of apparently useful metrics. Now
it is time to start with completing this research by providing
empirical results. This will enable a larger to community to
use AOSD metrics and more importantly, understand the
benefits of AOSD. Thus, we have to strive for planning and
carrying out the corresponding experiments. The results
may also give hints as to for which purposes metrics exten-
sions are useful and for which purposes separate metrics are
useful.

5. REFERENCES
[1] E. L. A. Baniassad, G. C. Murphy, C. Schwanninger,

and M. Kircher. Managing crosscutting concerns
during software evolution tasks: An inquisitive study.
In 1st International Conference on Aspect-Oriented
Software Development (AOSD), pages pp. 120–126,
2002.

[2] Victor R. Basili. Software Modeling and
Measurement: The Goal Question MetricParadigm. In
Computer Science Technical Report Series,
CS-TR-2956(UMIACS-TR-92-96), University of
Maryland, 1992.

[3] Coral Calero, Mario Piattini, and Marcela Genero.
Method for obtaining correct metrics. In ICEIS (2),
pages 779–784, 2001.

[4] Shyam R. Chidamber and Chris F. Kemerer. A
metrics suite for object oriented design. IEEE Trans.
Software Eng., 20(6):476–493, 1994.

[5] Norman Fenton and Shari Pfleeger. Software Metrics:
A Rigorous and Practical Approach (2nd edition).
1997.

[6] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. v. Staa. Modularizing design
patterns with aspects: A quantitative study. In
International Conference on Aspect-Oriented Software
Development (AOSD), pages pp. 3–14, 2005.

[7] Mik Kersten and Gail C. Murphy. Atlas: A case study
in building a web-based learning environment using
aspect-oriented programming. In OOPSLA99, pages
340–352, 1999.

[8] Barbara Kitchenham, Shari Lawrence Pfleeger, and
Norman E. Fenton. Towards a framework for software

measurement validation. IEEE Trans. Software Eng.,
21(12):929–943, 1995.

[9] Christa V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, Nov.
1997.

[10] Claudio Sant’Anna, Alessandro Garcia, Christina
Chavez, Carlos Lucena, and Arndt von Staa. On the
Reuse and Maintenance of Aspect-Oriented Software:
An Assessment Framework. In XVII Brazilian
Symposium on Software Engineering, 2003.

[11] Paolo Tonella and Mariano Ceccato. Aspect mining
through the formal concept analysis of execution
traces. In WCRE, pages 112–121. IEEE Computer
Society, 2004.

[12] Elaine J. Weyuker. Evaluating software complexity
measures. IEEE Trans. Software Eng.,
14(9):1357–1365, 1988.

[13] A. Zakaria and H. Hosny. Metrics for Aspect-Oriented
Software Design. In Workshop on Aspect-Oriented
Modeling AO’03, 2003.

[14] Jianjun Zhao and Baowen Xu. Measuring aspect
cohesion. In Michel Wermelinger and Tiziana
Margaria, editors, FASE, volume 2984 of Lecture Notes
in Computer Science, pages 54–68. Springer, 2004.

3


