Combining Composition Styles
in the Evolvable Language LAC

Stephan Herrmann
Technical University Berlin,
10587 Berlin, Germany
stephan@cs.tu-berlin.de

1 Introduction

Languages for Advanced Separation of Concerns
(ASoC) have seen some rapid development during the
last years. The current state is, however, in a way unde-
fined. Some experience exists, where academic develop-
ers have applied ASoC technology to moderately sized
systems. There is still more need for empirical studies
in this field. None of the proposed languages really has
yet proven its maturity for industrial style application.

The different language models pursued by different
groups of researchers share the same intention of im-
proving modularity in situations that where not support
well by traditional languages. In spite of this common
motivation, available ASoC languages are not necessar-
ily compatible. Partly, they in fact address different
sub—problems of broken modularity, partly, they utilize
incompatible concepts for similar problems. The great
merger has not happened.

While the two leading language implementations, As-
pectJ and Hyper/J are elaborated up-to a point, where
moving towards each other seems to be impossible, a
proposal dated 1999 [6] had not been implemented to
date, which has the capability to combine some ideas
from different groups of researchers. The model is called
Aspectual Components. This paper presents a light—
weight implementation of Aspectual Components, by
which the design of this model is refined and open design
decisions are cast into this discussion. We implemented
LAC as a small extension to the interpreted language
Lua [4]. Thus, LAC stands for Lua Aspectual Compo-
nents.

In section 2, we will present the conceptual elements of
Aspectual Components according to [6], supplemented
by some considerations that arose while implementing

LAC.

Section 3 presents the internal design of LAC, introduc-
ing concepts like facet/compound objects and run-time

Submission for ASoC Workshop at ICSE 2001.

Mira Mezini
Darmstadt University of Technology,
64283 Darmstadt, Germany
mezini@informatik.tu-darmstadt.de

weaving as a special style of meta programming. This
might lay the grounds for a larger family of languages.

Section 4 briefly shows, how the simplicity of Lua fa-
cilitated rapid development of LAC, which can easily
be extended to other styles of defining and composing
modules.

This work builds upon the experience, we gained when
developing Pluggable Composite Adapters (PCA [7])
and Dynamic View Connectors (DVC [3]). Aside from
similarities in the language model, DVCs also used some
of the same technique, basically because it is imple-
mented in the same language: Lua. There are two
major differences between both developments: DVCs
are embedded into a framework for software engineer-
ing environments, which puts a focus on many system
properties, that are otherwise beyond the scope of a pro-
gramming language. LAC does not carry this burden,
but instead implements a language model that is much
richer in terms of different styles of software composi-
tion.

2 Ingredients to Aspectual Components
Aspectual Components were in part inspired by the
ideas of Adaptive Programming. The main similarity
concerns the focus on graphs of classes, which both ap-
proaches share. A class graph is found to be the most
appropriate unit when specifying collaborative behavior
that involves not only a set of classes (resp. their ob-
jects) but also the structure of relations between classes
(objects).

When considering class graphs as the components of a
system, two kinds of components are distinguished: reg-
ular components (“base”) can be identified with a con-
cept like packages in Java. Fig. 1 introduces the syntax'
of LAC by showing two (unrelated) classes, Point and
FileLogger, that will serve as the base component for
the following example. A base component is completely
implemented or uses abstract methods that have to be

1 This syntax is in a way non-standard, but note, that im-
plementing LAC did not involve writing or modifying a parser.
With only minor modifications, all examples in this paper follow
the syntax of Lua.

Point = Class {
attributes = {
x : Integer,
y . Integer
|2
methods = {
setX = method (x : Integer)
self. x = x
end,
setY = method (y : Integer) ...
set = method (x : Integer, y : Integer)

self.x = x
selfy =y
end

swap = method ()...
tostring = method (). ..

}
}

FileLogger = Class {

attributes = {
filename : String

|2

methods = {
log = method (msg : String)

file_append(filename, msg)

end

Figure 1: Base component in LAC.

provided by subclasses of an abstract base class. The
mechanism of subclassing is, however, not always suit-
able for filling in the missing details of a component.
Aspectual Components add another kind of open spots
in a collaboration, that are called expected methods. In
the following the term Collaboration is used for a class
graph that is abstract because it is implemented against
an ezpected interface. The expected interface of a Col-
laboration is defined to be the set of all expected meth-
ods of its classes. These classes are called Participants
of their respective Collaboration. Thus, a Collaboration
is a partial implementation, that is, however, declara-
tively complete?. Fig. 2 shows a Collaboration that im-
plements the publisher subscriber pattern, defining two
roles: Publisher and Subscriber. Publisher provides
the functionality of maintaining a list of subscribers
(subscribers, attach, detach), while Subscriber de-
clares a method subUpdate, by which a change may be
notified to the subscriber. The open spots are expected
methods changeOp and subUpdate.

An expected method is bound to a real method during

2 This very usefull notion has been introduced in [8] as a prop-
erty of hyperslices.

PubSub = Collaboration {
Publisher = Participant {
expected = {
changeOp = method () end
12

attributes = {
subscribers : List
},

initialize = method ()
self.subscribers = List:create()
end,
methods = {
attach = method (sub: Subscriber)
self.subscribers:append(sub)
end,
detach = method (sub: Subscriber) ...
|2
replacements = {
changeOp = method ()
expected ()
self.subscribers:foreach(
function (i: Integer, s: Subscriber)
s:subUpdate(%self)
end

)

end
}
12
Subscriber = Participant {

expected = {
subUpdate = method (publ: Publisher) end
}

}

}

Figure 2: A Collaboration in LAC.

deployment, which connects the Participants of a Col-
laboration to classes of a base component. Expected
methods differ from abstract methods, in that a Par-
ticipant may replace an expected method. This might
be compared to the hypothetical case of a superclass
overriding the methods of its subclass. This reverse in-
heritance property allows to modify the behavior of a
base by deploying a Collaboration. In our example, the
expected method changeOp is replaced (wrapped) by
a method that first passes control to the original ver-
sion (expected()) and afterwards calls subUpdate()
for each registered subscriber.

Deployment is defined by a module of its own that com-
prises a set of mappings between Participants and base
classes, by which all expected methods are bound. Such
a deployment module is called a Connector. Fig. 3 shows
how the Collaboration PubSub is applied to classes

Point and FileLogger. At top level the role Subscriber
is bound to class FileLogger and the role Publisher is
bound to class Point. Each reference to a base class
that is to play a given role is further specified by bind-
ings of expected methods. So the player [FileLogger]
in its role Subscriber implements subUpdate using its
log() method (from FileLogger). It makes use of the
fact, that in this context the corresponding Publisher
must be a Point and invokes publ:tostring(). The
player [Point] binds its expected method changeOp in
a different way: The Pattern “set.” refers to all meth-
ods whose names start with set followed by exactly
one arbitrary character. In class Point this matches
setX and setY, which means both methods play the
role of changeOp, i.e., both methods are wrapped by
the replacement changeOp from Publisher. If instead
{"set.*", "swap"} were used as a pattern, also set
and swap would be treated as changeOp.

LogSetOneCoordinate = Connector {
Collaboration = PubSub,
Subscriber = {
[FileLogger] = {
subUpdate = method (publ : Point)
self:log("’set.’ on "..publ:tostring())

end
}
}
Publisher = {
[Point] = {
changeOp = "set.”

}
}
}

Figure 3: A Connector in LAC.

Composition Styles

As we have just seen, Participants and expected meth-
ods can be bound in different ways. In its most simple
form, a Collaboration mimics generic classes, and de-
ployment binds its type parameters (=Participants) to
actual classes. However, deployment will usually per-
form adaptations that would not be possible just by
generic classes. Binding expected methods can be done
declaratively or programmed.

e The declaration expected_name = provided_name
binds one Participant method to one base method.

e expected_name = name_pattern binds one Par-
ticipant method to a set of base methods with
matching names.

e expected_name = method () . end binds the
Participant method to an implementation given
here in the connector.

These declarations define which method(s) are provided
to the Collaboration. The effect of binding is also deter-
mined by the absence or presence of a replacement. In
the first case two methods are simply identified, while
the second case introduces a modified (wrapped) version
of the provided method.

Multiple binding may also occur on class level: If a class
Line were added to the base component, the deploy-
ment could be changed to hold this mapping:
Publisher = {
[Point, Line] = {
changeOp = "set.”
}

This would add the Publisher functionality to both
classes, Point and Line. Because this introduces com-
mon properties to classes that need not be related in
any way within their component, this mimics the intro-
duction of an anonymous ad-hoc supertype.

So far, we mainly followed the model given in [6]. The
next section shows our design of the LAC interpreter.

3 Ingredients to the Design of LAC

When developing an interpreter for Aspectual Compo-
nents, the first issue involved the operational semantics
of a Connector. We found that, when using Lua as the
basis for LAC, connectors are in fact meta programs,
or more precisely: a connector definition is the input to
a meta program, that also reads base classes and the
Collaboration in order to produce a woven version that
combines functionality from all three modules.

One step of this meta program is wrapping an expected
method by its replacement. The generated wrapper has
to ensure, that the replacement may invoke the origi-
nal version by the syntax of expected(). This raises
the question which arguments should be passed to that
call, and how to proceed in the case of different signa-
tures of expected and replacement. In Lua the answer
is simple: the replacement may use any number of ac-
tual arguments or chose to ignore some or all of them
(Lua automatically adjust the argument list). The call
expected() is now implemented as a function closure,
that is created by the wrapper such that it passes all
original arguments to the original method. I.e., the re-
placement need not know about arguments, which are
passed implicitly. Similar considerations regarding re-
turn values are currently being evaluated.

The next issue concerned the run-time structure that
should be created by a Connector. Already [6] contains
a few thoughts about different degrees of Connectors,
which may be either static or dynamic. Anticipating
any dynamic mapping, the classes generated by a LAC
Connector are split into the base classes and additional
Facet classes, from which also split objects are created

conn_obj1 conn_class1
| attr3|18 _mﬂhﬁ:
attr4| meth7|_|
T . e
Collaboration i
facet_obj1 facet_classl
attr1|17 cla methl| 1"
attrs] ~ [, y T meth3| S Ry
facet
Mappin base2facetob base2facetclass
class
K expected
base_obj1 base_classl
class
base | lattri|23 | methl| -]
attr2] ~—J, meth2| |
ooo ~ ...

Figure 4: Run-time structures of the LAC interpreter.

at run-time, having a Facet part and a base part. So for
any base object, a number of CompoundQObjects may be
created, that in addition to the base object designate
a Facet and the enclosing Connector. Fig. 4 shows the
structures that exist at run-time. Here we see, that a
Connector also exists at run-time. It is the place where
different mappings are kept. Connectors also have these
properties of classes and objects: attributes, methods,
inheritance.

Having this infrastructure of base, facet and connector
— all at class and instance level — the behavior that
had to be implemented is little more than just different
styles of delegation between these different parts.

We then further elaborated the model of Aspectual
Components by supporting three different kinds of Con-
nectors: The structure given in Fig. 4 corresponds to a
DynamicConnector, which needs to be instantiated be-
fore use. It allows the greatest level of flexibility because
separate instances of the same Connector may define
separate contexts, in which separate Facets of the same
base objects may live. DynamicConnectors raise the
issue of how to activate a Connector. Connector activa-
tion is responsible for entering the context which makes
certain Facets visible to the program.

The second kind of Connectors is just a convenience
for a restricted version of DynamicConnectors: a Sin-
gletonConnector has exactly one instance that is cre-
ated implicitly. So, in terms of Fig. 4 conn_class1 and
conn_objl can be merged to one structure.

StaticConnectors behave significantly different: these
are the only Connectors, that actually modify the base.
Only the replacements of a StaticConnector are woven
directly into the corresponding base class. The orig-
inal method is no longer available, except as the ex-

pected method of this replacement. Different situations
have been identified, that require implicit activation of a
Connector in order to find all Facets that may be needed
within a method call.

Note, that two techniques allow to change the seman-
tics of client programs which may be unaware of the
deployment: A StaticConnector has effect on all ob-
jects of classes that were modified by the Connector,
and this effect is on during the whole program. The
other two kinds of Connectors allow an explicit acti-
vation, which temporarily changes the behavior of the
interpreter such that the replacements of this Connector
are also switched on. A client program that is aware of
a Connector may also explicitly invoke a method within
the context of a Connector, which is denoted by the
special syntax myconn[obj] :method ().

4 Ingredients to the Implementation of LAC
Looking behind the scenes we can report, that Lua
proved extremely convenient for this experiment. Its
small imperative core provides one powerful data type:
table, which is a hashtable of arbitrary key and value
types. All runtime structures could easily be imple-
mented as tables. The Connector meta program easily
rearranges different class structures and benefits from
the fact, that functions are values in Lua, and func-
tion closures can be created in order to store context
information. The real speciality of Lua is the concept
of tagmethods that allow to redefine the behavior for
basic syntactical constructs. So, e.g., the evaluation
of an expression o.i — i.e., lookup of field i in ta-
ble o — can be redefined by a Lua function, that is
installed as gettable tagmethod. These redefinitions
happen just for a given set of values that are identi-
fied by a special tag. Thus, tags and their tagmethods
range somewhere between subtypes of builtin types and
freely programmable meta classes. By this mechanism
all extensions to the interpreter as they were needed to
implement LAC, could actually be performed in Lua
itself. The details of this mechanism fall outside the
scope of this paper, but the result is worth noting: the
first version of the publisher subscriber pattern ran in
an interpreter, that was extended by just 213 lines of
Lua code. A more elaborated version, supporting all
three kinds of Connectors uses two modules containing
88 resp. 522 net lines of Lua code. The first module
implements standard classes and dynamic binding, the
second module implements LAC.

5 Discussion and Related Work

The numbers given in the previous chapter underline,
that LAC is a real light—weight language. Of course
this is not an end by itself, but the small size should
illustrate, how little effort it takes, to implement such an
interpreter on top of Lua, because of the well designed
hotspots by which the interpreter can be influenced.

By this technique we managed to combine different con-
cepts that so far almost seemed incompatible. LAC al-
lows modular software composition along these lines:

It allows collaboration based development like PCA[T7],
some techniques of generative programming [12] and
Hyper/J [11].

Activating and deactivating Connectors provides for dy-
namic, stateful contexts as in PCA[7] and Context Re-
lations [10].

Using wildcard based weaving allows modularization of
code that would otherwise be scattered through many
different places. In this, LAC resembles AspectJ [9].

Composition is performed by a separate module, the
Connector, thus strictly decoupling Collaboration and
base. Also Connectors are reusable software. This prop-
erty it shares with PCA and Hyper/J.

By its delegation based implementation, LAC is cer-
tainly related to approaches like Composition Filters [1]
and Darwin [5].

Consideration already go beyond this list of properties.
While experimenting with a “Locking” Collaboration,
we found that certain designs using Aspectual Compo-
nents have the “Jumping Aspect” problem [2]. Adding
just a slightly modified version of the expected() con-
struct allows to explicitly invoke the base method below
the Connector, i.e., without re-entering the replacement
that is currently active. Thus the problem vanishes.
This is just an example of well directed additions to
the concept, that can be implemented by adding just a
handful of lines to LAC.

Another example concerns the mechanism of selecting
methods for replacement, which currently applies Lua’s
standard pattern matching function. This could easily
be changed to the full power of regular expression, and
even more striking: instead of a string pattern, a func-
tion could be allowed, that by introspective examina-
tions collects methods for replacement. Such a function
may rely on any meta information that can be made
available at run-time. This illustrates, how at certain
hotspots, the programmer might be allowed to directly
provide pieces of meta programs, that determine the
behavior of the weaver or similar mechanisms.

The experiment of implementing Aspectual Compo-
nents in Lua has successfully shown, not only that Lua
is suitable for rapid and evolutionary development of
new programming languages. We have demonstrated
how such a tool helps to elaborate programming mod-
els that have not yet been fully specified. We have set-
tled some issues that had been left open in [6] and gave
hints on further refinement of the model such as to give
the power for solving problems of very different kinds.

Considerations about a type system for Aspectual Com-
ponents have not been covered by this work. We believe
that keeping execution and type checking of programs
in separate tools is even a quite effective strategy. Issues
of performance are only in part considered by the im-
plementation. No measurements have been performed,
yet. Of course, turn—around time when programming in
LAC and when developing LAC itself is minimal, since
Lua needs no compilation and starting the interpreter
happens without noticable delay.

REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting object interactions us-
ing composition-filters. In Object-Based Distributed
Processing, LNCS 791, pages 152—-184, 1993. 5

[2] J. Brichau, W. De Meuter, and K. De Volder.
Jumping aspects. position paper at the workshop
7 Aspects and Dimensions of Concerns”, ECOOP
2000. 5

[3] S. Herrmann and M. Mezini. Pirol: A case study
for multidimensional separation of concerns in soft-
ware engineering environments. In Proc. of OOP-
SLA 2000. ACM. 1

[4] R. Ierusalimschy, L. H. de Figueiredo, and W. Ce-
les. Lua—an extensible extension language. Soft-
ware: Practice and FExperience, 26(6):635-652,
1996. 1

[6] Giinter Kniesel. Type-safe delegation for run-time
component adaptation. In Proc. of ECOOP’99,
LNCS 1628, pages 351-366. 5

[6] Karl Lieberherr, David Lorenz, and Mira Mezini.
Programming with aspectual components. In Tech-
nical Report, Northeastern University, April 1999.
1,1,3,3,5

[7] M. Mezini, L. Seiter, and K. Lieberherr. Software
Architecture and Component Technology: State
of the Art in Research and Practice, chapter
Component Integration with Pluggable Composite
Adapters. Kluwer Academic Publishers, 2000. 1,
5,5

[8] H. Ossher and P. Tarr. Software Architecture
and Component Technology: State of the Art in
Research and Practice, chapter Multi-Dimensional
Separation of Concerns and The Hyperspace Ap-
proach. Kluwer Academic Publishers, 2000. 2

[9] PARC Xerox, available from http://aspectj.org.
AspectJ Language Specification, Aug 1999. 5

[10]

L. Seiter, J. Palsberg, and K. Lieberherr. Evolution
of Object Behavior using Context Relations. IEFE
Transactions on Software Engineering, 24(1):79—
92, Jan. 1998. 5

P. Tarr and H. Ossher. Hyper/J User and Instal-
lation Manual. IBM Corporation, 2000. 5

Michael VanHilst and David Notkin. Using role
components to implement collaboration-based de-
sign. In Proc. of OOPSLA’96, volume 28(10) of
ACM SIGPLAN Notices, 1996. 5

	1 Introduction
	2 Ingredients to Aspectual Components
	3 Ingredients to the Design of LAC
	4 Ingredients to the Implementation of LAC
	5 Discussion and Related Work

