
Applied Ontology to appear (2007) 1–25 1
IOS Press

A Precise Model for Contextual Roles: The
Programming Language ObjectTeams/Java

Stephan Herrmann
Technische Universität Berlin, Germany

Abstract. A number of proposals exist how to support the concept of roles at the level of programming languages.
While some of these proposals indeed exhibit very promising properties, the concept of roles has not found its
way into mainstream programming languages. We argue that this is due to the richness of the concept of roles
and the fact that each existing proposal focuses on some aspects of roles while neglecting others. We present the
programming language ObjectTeams/Java and using the categories of Steimann (2000) we demonstrate that this
language covers more aspects of roles than previous approaches. We suggest that a thoroughly defined programming
language featuring roles may contribute to a better understanding also in other fields using roles.

Keywords: Roles, context, conceptual modeling, programming language, behavior, method dispatch.

1. Introduction

Conceptual modeling has a significant history of using “roles” as a fundamental means for
capturing the relevant entities within a domain Kristensen & Østerbye (1996). The concept of
roles also appears in a variety of other research areas such as design patterns and programming
language design. While the concept is widely accepted for conceptual modeling, other areas are
more reluctant. Such reluctance is in part motivated by the lack of a precise understanding of
what roles actually are.
This paper gives a definition of roles from a programming language perspective. In order to
structure the discussion we will first present a system of coordinates which allows to group
the many properties that are ascribed to roles (Sect. 2). We will then present a programming
language with explicit support for roles, ObjectTeams/Java, and relate this language to previous
work on roles. We argue that the design of a programming language with explicit support for
roles can be seen as a precise foundation of the concepts involved. While formal specifications
could equally be used for a precise foundation a real programming language has the advantage
of practical applicability. Our definition of roles can directly be validated by writing programs
in ObjectTeams/Java and evaluating the results along the following questions: (1) Is it possible
to model given domains using ObjectTeams/Java (OT/J for short)? (2) Does OT/J support
“natural” models, i.e., can a correspondence between the mental model of a domain expert and a
program in OT/J be established and maintained throughout development? (3) Does the resulting
program behave in ways that are conform to the given domain?
If the above questions can be answered affirmatively we conclude that the language OT/J could
be seen as an ontology, defining in our specific case fundamental concepts “role”, “team” and
their various static and dynamic relations.
With our presentation we try to convince the reader that it is possible to define the concept of
roles in a way that is not only rigorous but indeed precise enough to give actual implementations
that directly exploit the concept of roles in all phases of the software life-cycle. We hope that a
clear understanding of roles at the implementation level will also help to eliminate the confusion
that arises from different interpretations of the concept of roles.
The paper is structured as follows: Section 2 introduces a system of coordinates for describing
role-based approaches. We will then present ObjectTeams/Java along those coordinates (Sect. 3).

1570-5838/07/$17.00 c© 2007 – IOS Press and the authors. All rights reserved

2 Stephan Herrmann / A Precise Model for Contextual Roles.

 Course

Participant
name
matr
grade

teachesHomework

Lecturer
slides
handouts

marks

produces

held_by

«playedBy»

Student
name
matr

«playedBy»

Professor
answerPhone()

Fig. 1. Example: Roles represent entities within a context

When all relevant features of the language have been presented we will show by means of a sim-
ple example (Sect. 4) how the concepts of Object Teams relate to the concept of relationships.
Section 5 presents a meta model of Object Teams, thereby summarizing core structural relation-
ships and also discusses possible combinations of concepts. We then apply the criteria defined
by Steimann (2000) to ObjectTeams/Java, concluding a nearly complete coverage of all desirable
properties (Sect. 6). We conclude with a discussion of related work (Sect. 7).

2. System of coordinates for roles

At a very general level it is fairly easy to establish agreement about the concept of roles.
Abstractly spoken, role is a relative concept that defines the intersection of an entity and a context
of interaction. Entities may exist outside the context and may have a well-defined set of properties.
Describing on the other hand a context focuses on the collaboration of some “elements”. These
elements can be identified as roles which represent existing entities within a given context. The
same concept of context is sometimes called a “collaboration”, “subject” or a “use case” etc.
Figure 1 depicts a standard example, which will be used throughout this paper. It shows two
basic entities, Professor and Student which have no direct association. Also shown is the context
Course, comprising a Lecturer and a number of Participants being taught by the lecturer. The
context is decorated with a “T” icon, which will be interpreted as a “team” when moving to
the concrete model of Object Teams in Section 3. In this example Lecturer and Participant are
roles of their respective base classes Professor and Student. This relationship is shown by the
association with stereotype «playedBy». These roles only exist within the context of a Course.
Further details will be explained as we go.
In order to precisely define the notion of roles, it is necessary to specify the semantics of
both relationships: the playedBy relationship between a role and its base and the containment
relationship between a context and its roles. The literature shows that such precision is not trivial
to achieve.
Steimann (2000) has presented a list of 15 features by which roles have been characterized in
different approaches. This list of features can be seen as the union of criteria presented in previous
approaches. This paper will investigate the concept of roles along a two-by-four matrix, which
can basically be seen as an abstraction over Steimann’s 15 features.
On the one axis of our system of coordinates we distinguish a static and a dynamic view. The
static view will discuss the structural relationships between concepts. By contrast, the dynamic
view describes the (run-time) evolution of structures and possible behaviors and interactions.
Along the other axis we will discuss the elements of relevance which are instances, fields, methods
and context.

Stephan Herrmann / A Precise Model for Contextual Roles. 3

 oop: Course

teaches

:Lecturer
slides
handouts

p2: Participant
p1: Participant

joe: Student

«playedBy»

«playedBy»

jane: Student
«playedBy»

smith: Professor

 se: Course

:Lecturer
slides
handouts

«playedBy»
 :PhD

:Supervisor«playedBy»

Fig. 2. Instances of the model in Fig. 1

We will now present the relevant properties and design options that can be made explicit
using this system of coordinates. This section does not include any judgment which of these
design option we actually favor. The following section will then populate the design space by
presenting the programming language ObjectTeams/Java, which supports most of the design
options presented, whereas a few options where intentionally dropped. We will mark and discuss
those restrictions as we go.

2.1. Instances

In contrast to purely class-based approaches, role-based approaches put more emphasis on
instances. However, no question regarding roles seems to be more controversial than the issue
of roles instances and their identity: are roles distinguishable instances with unique identity or
are a role and its base the same object? For a discussion from a database perspective, e.g.,
see Wieringa & de Jonge (1995). Clearly a model supporting roles as distinguishable instances
provides greater flexibility, because such a model admits dynamic structures that can not be
captured otherwise. On the other hand some authors claim that admitting role instances results
in undue complications which should simply be avoided by a more restrictive model of roles.
Examples for this restrictive approach are VanHilst & Notkin (1996) and Steimann (2001).
The difference can be illustrated by an instance graph that could be created from the class dia-
gram shown in Figure 1. The center of Figure 2 shows an instance of class Professor called “smith”.
He plays the role of the Lecturer for each of the Courses “oop” (Object-Oriented Programming)
and “se” (Software Engineering). Within an unnamed PhD context the same Professor plays the
role of the Supervisor. While all role-based approaches admit the coexistence of a Lecturer role
and a Supervisor role for the same base entity (Professor), the existence of two Lecturer roles
of the same Professor is problematic (to say the least) in restrictive approaches, i.e., approaches
where roles have no identity of their own. We will discuss the options and consequences below.
Our own approach combines the best of both worlds, which can only be achieved by first admit-
ting role instances for the sake of flexibility and then addressing the supposed extra complexity.
We will come back to this issue at the end of our presentation of ObjectTeams/Java in Section 3.6,
where we try to show that it is actually a non-issue by discussing a solution which allows both
interpretations within the same model.

Static view
Assuming roles are instances which can be referenced, a number of structural patterns becomes
possible which seem to be characteristic for roles. First of all, it is always the roles which are
attached to a base object. The latter remains independent of any roles. This is illustrated by the
direction of the «playedBy» relationship. For the separation of concerns it is even crucial to be
able to reason about base objects while completely ignoring any roles.

4 Stephan Herrmann / A Precise Model for Contextual Roles.

It is a common understanding that a role is always the role of exactly one base object. Looking
the opposite direction two kinds of multiplicities come into focus: several roles can be attached
to the same base object, namely several roles of different role types as well as several instances
of the same role type (cf. Fig. 2).
An additional situation is shown by the unbound role Homework. This role clearly is part of the
Course collaboration. However, there exists no corresponding concept outside the Course context,
so this role is not played by any base class. As such, unbound roles appear as normal classes,
except for being participants in a context-defined collaboration.
In the literature foundation or dependence are considered an essential property of roles (e.g.,
Masolo et al. (2004); Loebe (2007)). In this sense unbound roles only depend on an enclosing
context, whereas bound roles additionally depend on a player.

Dynamic view
With roles being instances attached to a base object it is possible that the life-cycle of a role
differs from the life-cycle of its base. At any time during the base object’s life-cycle it is possible
to attach a role instance to this base. The same holds for removing a role from its base. In some
approaches it is even possible to handle (temporarily) unattached roles or change the attachment
by moving a role from one base object to another (sometimes called role migration).
Using the Course example the issue of unattached roles would translate to a Lecturer who
operates on his own, without any Professor playing this role. Since this is not possible it is not clear
how unattached roles should be supported in a sound model. Significant additional efforts would
be needed, like ensuring that a Course is not “active” as long as its Lecturer role is unattached.
We have not found any explicit support for effectively suspending collaborations in the literature.
By contrast, the following questions outline contingent options: Can a Professor become the
Lecturer for a new (an existing) Course? Can a Professor put down a Lecturer role? Can the
same Lecturer (while the course is running) be played by different Professors in sequence?
The above options for a role’s life-cycle are naturally realized using a unidirectional link from
a role to its base object, meaning that a role knows its base but the base does not explicitly keep
track of all its roles. This raises the question what kinds of navigation are supported between
roles and bases.
It is trivial to allow for navigation from a role to its base (using the mentioned base link).
This navigation answers questions like “Which Professor is playing the Lecturer role for Course
‘oop’?”. Conversely, it may also be interesting to ask, e.g., “Which Courses does ‘smith’ teach?”.
The latter question asks about the roles of a given base object. This requires either the ability
to navigate the role-base link in a backward direction or knowledge about all Courses in the
world, and checking if any of their Lecturer roles are played by “smith”. Less problematic are
requests like: “ ‘smith’, could you please give me your handouts for ‘oop’?” (which requires to
know “smith’s” Lecturer role in “oop”). In that case the Course is known and the corresponding
Lecturer role can be determined as the said intersection of “smith” and “oop”.

2.2. Fields

In some applications of the concept of roles, significant focus lies on information modeling. For
that reason it is crucial to discuss how roles may contribute to the overall system state.

Static view
The observable state of a role is usually defined by the union of its direct fields and the fields
of its base object: both sets of fields contribute to the observable behavior of the role. On the
one hand it is a central property of roles to share the state of their base object. On the other
hand an object may have a field only in the context where it plays a specific role. Given the
multiplicities discussed above an object may even have different values for the same attribute in
different contexts, where these values are actually stored as fields of the respective roles. As an

Stephan Herrmann / A Precise Model for Contextual Roles. 5

example consider the fields slides and handouts in Figures 1 and 2. The same Professor “smith”
will have different decks of slides for his Courses “oop” and “se”.
This replication of fields being (indirectly) attached to the same base object is not possible
without some kind of role instantiation. Without role instantiation a base object would have to
grow indefinitely when an unbounded number of roles is attached to it. Furthermore consider the
additional field handouts: If a Professor (the base object) would manage sets of slides and sets
of handouts, it must be ensured that the “oop” handouts will not be distributed accompanying
the “se” slides or vice versa. The simplest way of assuring the consistency between slides and
corresponding handouts would be to combine both into an instance labeled “oop” or “se”. Thus,
in an attempt to avoid role instances we have just re-invented role instances.
This point about multiplicities is crucial because a number of researches still follows the dogma
that role instances as a special case of “object schizophrenia” should simply be avoided. Such
avoidance would, however, mean that certain situations simply cannot be modeled, except by the
introduction of even more objects (which was to be avoided in the first place).

Dynamic view
Fields of a role are visible only when looking at the role, not at its base. Different concepts exist
for how a role may at run-time access the shared state of its base. For illustration please confer
to Figure 1: Role Participant abstractly defines two properties name and matr (for matriculation
number). Both properties are not stored in the role but refer to corresponding fields in the
underlying base of type Student.
In those approaches where role and base form a close union (let’s called it the one-instance
approach) also base fields are accessed as if they where direct fields of the role (i.e., the abstract
declarations in Participant would not be needed). In other approaches some forwarding may be
needed which would possibly involve one or more methods encapsulating the field. Forwarding
may happen either explicitly or implicitly, the latter approach being able to simulate the one-
instance approach on top of a model where role and base are distinct instances.
If field access is handled using message forwarding the dynamic view of fields will be subsumed
in the dynamic view of methods.

2.3. Methods

Since methods and fields together define the properties (features) of an object, it should not
surprise to see some commonalities between these two. However, while fields need to be allocated
for each instance, methods have no such requirement. On the other hand methods are involved
in control flows which adds to the complexity of the matters at hand.

Static view
Much like fields a role may share methods of its base object (as defined in the base object’s
class).
If fields of the same name exist in a role and its base at run-time multiple slots will exist. Instead
of such replication, methods with multiple definitions may override each other. As a motivating
example consider a method answerPhone in class Professor. Certainly the regular behavior of
answering his (mobile) phone is not tolerable while the professor is giving a lecture. For this
situation the role Lecturer should override the normal behavior with a behavior that is more
suitable to this context.
A language combining object-oriented programming with roles may need to specify two different
kinds of overriding: (1) overriding of a shared (inherited) method by a sub-class and (2) overriding
of a shared base method by a role. Both kinds of overriding can be declared implicitly (based on
name equality) or explicitly by some extra declaration.
The semantics of any kind of overriding requires a look at the runtime behavior, i.e., the
dynamic view.

6 Stephan Herrmann / A Precise Model for Contextual Roles.

Lecturer
slides
handouts
answerPhone()
explain()
writeNeatly()

«playedBy» Professor

answerPhone()
explain()
scribbleOnBoard()

Fig. 3. Several methods in role and base.

r b
base

m() m()

self.o() self.o()

forwarding

r b
base

m() m()

delegation

Instances r and b share one implementation of m.
Calls to m on r are dispatched to b.
Self calls on b (within a control flow of r):
 with forwarding: remain at b.
 with true delegation: dispatch back to r.

Fig. 4. Forwarding vs. Delegation.

Dynamic view
Dynamic method dispatch is maybe the central runtime mechanism of object-oriented program-
ming languages. Role objects introduce some more options to method dispatch.1 For illustration
see Figure 3. The two versions of method answerPhone have already been mentioned: while the
Professor is in class his normal behavior – even if triggered without knowledge about the Course
– should be overridden. The Lecturer’s method explain may not need a specific implementation
as the normal behavior of Professor can be re-used. The realization of explain may internally use
another method scribbleOnBoard, which in the Professor’s office results in hardly legible scrib-
blings, which only his PhD students can decipher. In order to make the method explain useful
for the Course context, internal calls to scribbleOnBoard must use the method writeNeatly
given in Lecturer (which produces neat writing but consumes more time). These scenarios can be
mapped to different techniques of method dispatch.
Most commonly, sharing the behavior of its base is implemented as forwarding method calls
from a role object to its base. Such dispatch may or may not apply true delegation with late
binding of self.2 The weaker form of forwarding (see left-hand side of Fig. 4) forgets about the
initial call target (r, the role), and subsequent self-calls will remain at the base object b. Thus,
forwarding does not allow methods of the parent object (here: b, the base object) to be overridden
by methods of the child (here: role). For the example this would imply that forwarding explain-
calls from the Lecturer to the Professor would result in illegible scribblings on the Course’s black
board. Note, that a pattern based implementation of roles in a standard object-oriented lan-
guage Bäumer et al. (2000) can only support weak forwarding. Anything beyond weak forwarding
requires explicit support by the language.
The stronger form of delegation (see right-hand side of Fig. 4) is used to define object-based
inheritance which has basically the same power as ordinary class-base inheritance (see Stein et al.
(1989) and our discussion of related work). The key idea behind true delegation is that the original
call target (r) remains active even while executing b.m(), such that self within b.m() will in
that case still be interpreted as referring to r. This interpretation of self allows code within b
to actually invoke r.o(), which means, o() is effectively overridden. Using true delegation the

1Kappel et al. (1998) identify significant differences among proposed role languages regarding method dispatch.
2Please note, that the issue of forwarding versus delegation is of some general relevance in object-oriented
programming. Yet, any concept of roles must provide an answer to this question.

Stephan Herrmann / A Precise Model for Contextual Roles. 7

Lecturer can actually combine the Professor’s capability to explain with the Lecturer’s capability
of neatly writing to the board. True delegation brings the power of the Template-and-Hook pattern
to the relationship between a role and its player, as can be seen when identifying explain as a
template method and scribbleOnBoard as the contained hook.
A third concept may also be used for method dispatch: method call interception. By this tech-
nique, the control flow can be redirected from the original call target to some other instance.
Redirecting a call to a base method as to invoke a role method instead has mainly the same
effect as overriding in the context of object-based inheritance. It might, however, be interesting to
distinguish whether or not dynamic dispatch is influenced by who initially triggered a behavior:
Should a Professor completely abandon his original behavior simply because he is a Lecturer?
When writing to a board, the adapted behavior should only be used when called (indirectly) from
a Lecturer role. On the other hand, when the Professor’s phone rings while he gives a lecture he
should not care who is calling (regarding both phone call and method call).
Unfortunately, each of these three concepts, forwarding, delegation, interception, is in some
publications called “delegation”. In the context of design patterns the word “delegation” usually
refers to the concept of forwarding. In the role-based approach of Albano et al. (1993) a concept
of dynamically extending a role with a sub-role is defined, which uses “delegation” to dispatch
to the lately added sub-role. This kind of dispatch should actually be classified as method call
interception.
Such issues of dispatching are fundamental when designing programming language support
for roles. For more abstract models it might be less important, but it is still important to note
that a role may exhibit behavior that is similar to that of its base but with certain well-defined
differences concerning additional methods and methods that are overridden in the role. More
generally spoken, it must be defined how a base and its role(s) collaborate to perform the desired
behavior.

2.4. Context

At the conceptual level, roles are frequently defined as named places in a relationship or the like
(see, e.g., Steimann (2000)). In other words, roles define the intersection of objects and contexts,
such that different contexts select different roles. Our example (Fig. 1) has introduced the contexts
of different Courses and a PhD context.

Static view
A context groups a set of roles assigning a specific place to each of its roles. Such grouping
creates a containment relation between the context and its contained roles.
Generally spoken it is a central property of roles to be defined only in relation to something.
Defining explicit contexts provides an excellent means for separation of concerns. Within a given
context roles may define views of actual entities in the world. It is the power of this concept to
support focusing on relevant aspects only while ignoring other aspects.3 This general requirement
can be realized by explicitly defining the interfaces of roles in a way that certain features of the
base are visible at the role (by way of forwarding or delegation) while other base features are not
accessible via the role.
Referring back to Figure 1 the interface of course Participants has been designed as to provide
access to the base’s name and matr properties. All other properties of Students (like, e.g., the
date of birth) are not visible properties of a Participant.
While of course many different views on Students are possible it is the context that discriminates
into relevant and irrelevant aspects; relevance must always be seen relative to a given context.

3In this section the word “aspect” should be interpreted in its natural meaning. The related work section will
discuss the relation between roles and the technical term “aspects” as in aspect-oriented programming.

8 Stephan Herrmann / A Precise Model for Contextual Roles.

In other words, the base object defines what we are looking at, while the context defines why
we are looking at this object. After answering both questions, the role defines how exactly we are
looking at the base object from the context’s perspective.
Having explicit support for context mandates its use for a variety of reasons, some of which
refer to existing design patterns:

– A context may model a relationship where the roles are the places in this relationship.
– A context may be a Mediator coordinating the collaboration of its roles.
– A context may be a Façade providing an interface for a set of roles which are not visible at
the outside.
– A context may be a module for a scenario.

Despite these general observations, programming languages supporting roles commonly ignore
the issue of context.

Dynamic view
Usually a role cannot migrate from one context to another, because it is the context that defines
the role. However, entering and leaving a context is an indispensable concept with regard to roles.
The effect of entering a context can be described as some kind of activation. Only roles of
a currently active context will ever be relevant for the execution of a program. There may be
different ways of entering or activating a context.
A context can either be seen as a purely abstract entity that merely groups role-classes. Other
approaches define context as first-class citizens, i.e., contexts can be instantiated resulting in iden-
tifyable instances at run-time. Note, that Figure 2 already uses context instances to distinguish
different courses.

3. Roles in ObjectTeams/Java

In this section we will present how roles are realized in the programming language Object-
Teams/Java Herrmann (2002b)4. The language combines concepts from different research areas.
It is mostly discussed in the context of aspect-oriented programming. Also collaboration-based
design has strongly influenced the language design. Collaborations are modeled using a new kind
of class-like module called team, hence the name Object Teams. ObjectTeams/Java (OT/J for
short) is the incarnation of this programming model for the host language Java.
The example in Figure 1 is in fact a valid Object Teams model. It will be used as a starting
point for illustrating details of OT/J. The presentation of roles in OT/J will follow the two by
four system of coordinates given above. While we walk through the matrix we will show how the
properties of roles captured in the matrix are mapped to constructs of OT/J.
We invite the interested reader to relate to the comprehensive language definition OTJLD
(short for ObjectTeams/Java Language Definition) Herrmann et al. (2007).5 The OTJLD contains
the precise definition of all constructs mentioned in this paper. For easier reference we add links
to the specific paragraphs of the OTJLD (e.g., an overview of the purposes of that document can
be found in (otjld§0)).
General introductions to OT/J can be found in Herrmann (2002b); Veit & Herrmann (2003).
Specific concepts and mechanisms are explained more in depth in Herrmann (2004a,b); Herrmann
et al. (2005). The focus of the following sections lies on assessing the suitability of OT/J for
implementing role-based models.

4For up-to-date software and documentation see http://www.objectteams.org.
5An up-to-date hypertext version of this document is always available at http://www.objectteams.org/def.

Stephan Herrmann / A Precise Model for Contextual Roles. 9

ATeam

ARole

teamField
teamMethod()

ABase
«playedBy»

1

1*

Fig. 5. Basic structure of role, team and base.

3.1. Role Instances

The primary decision in the design of the programming language ObjectTeams/Java is to model
roles by specific classes and to define a playedBy relationship at the class level which specifies
that each instance of the bound role class will be constantly attached to a given base instance
(otjld§2.1):

class Lecturer playedBy Professor ...

When illustrating Object Teams using the UML (see AOSD’02 (2002)) we draw an association
with stereotype «playedBy» (see Fig. 5).

Static view
A playedBy declaration by itself results only in an invariant that is enforced for all instances
of the role class: each instance will at creation time be attached to a base object of the declared
type. This link is immutable throughout the life-cycle of the role object. This restriction is due
to the fact that a base object may contribute essential properties to its role. In this setting an
unattached role would break the type system resulting in an object that lacks some features which
its type promises. In order to enforce this invariant the role–base link is completely hidden. By
this regime no client code may ever temper with the base link. However, a number of language
features, to be introduced below, is implicitly founded on the base link.
Statically, roles in ObjectTeams/Java allow any pattern of multiplicity discussed above. When
attaching multiple roles of the same type to the same base instance, these roles must reside in
different contexts in order to remain distinguishable.
In ObjectTeams/Java we furthermore distinguish between unbound and bound roles, where
only bound roles, which have a playedBy clause, strictly conform to the prevailing notion of roles.
An unbound role will never be attached to a base object. Still there is a number of properties
that bound and unbound roles share (otjld§1.2). A bound role may inherit from an unbound
role. Along role inheritance the playedBy-clause can be refined to a more specific base class
(otjld§2.1(c)).

Dynamic view
We have already mentioned that bound roles in ObjectTeams/Java cannot be unattached during
any time of their lifecycle. We have argued before why we think that this restriction is well
tolerable. The decision to realize the role-base link by an immutable reference excludes the option
of role migration, where a role could change its attachment from one base object to another.6

6The primary reason behind this decision was quite pragmatic: the concept of immutability already exists in
Java (using the modifier final). Using the immutability property it was relatively easy to guarantee non-nullity
for the base link, thus ensuring that every instance of a bound role class at any time has a valid reference to a
base instance. Without immutability we would have to explicitly enforce a non-null property by our type system.
In a language where potentially every variable may hold a null reference at run-time, non-nullity cannot efficiently
be guaranteed for a few variables since none of the possibly-null variables could ever be used in the right-hand
side of an assignment to a non-null variable. Once support for null-checking is well established in object-oriented
programming, we should reconsider the decision in order to support role migration.

10 Stephan Herrmann / A Precise Model for Contextual Roles.

ATeam

ARole ABase
lowering

lifting

Fig. 6. Two directions of navigation/translation.

Looking however from the base object, full dynamism is granted as roles may be attached and
removed from the base at any time. After unattached bound roles are ruled out, removing a
role obviously also means to destroy it. These operations are supported by means of predefined
reflective methods.
Navigation from a role to its base is trivial as mentioned before. However, ObjectTeams/Java
adds a novel mechanism for navigating the opposite direction: from a base object to its role. This
mechanism is called lifting (otjld§2.3).
The idea behind lifting is as follows: Whenever a base instance enters the context of a team
instance (a context for roles, see section “Context” below), it is translated by the lifting mechanism
to the corresponding role. In terms of the running example, whenever a Professor enters a class
room, he or she will become a Lecturer, given that this is the only role a Professor can play in
a Course. Similarly, when a Student is seen as a member of a Course, he or she is lifted to a
Participant role.
As an example for lifting consider the question how to retrieve the grade for a Student “jane”
with respect to a Course “se”. Obviously neither of the given objects “jane” nor “se” has a field
grade. The most elegant way to implement the query is by a method in type Course which takes
the Student as an argument:

int getGrade(Student as Participant part) { return part.grade; }

Here the signature of getGrade uses declared lifting (otjld§2.3.2) to do the essential look-up:
callers of this method must provide an instance of type Student, however, the method body
receives an argument of type Participant. The translation is requested by the as keyword. It is
transparently managed by the language, i.e., programmers never need to worry how to actually
find an appropriate role for a given base instance. After this lifting translation the field access
part.grade is indeed legal and safe.
Technically, each team maintains a mapping from base objects to role objects, such that a role
of a given type is identified by the pair of a base and a team object. This mapping is well-defined
due to the restriction mentioned above: it is not allowed for two roles of the same type and
attached to the same base object to reside in the same team. Formally, lifting is a function

teamInst× baseInst× roleType→ roleInst

As can be seen from this signature, lifting mandatorily requires a team instance, thus lifting is
not meant for requesting all roles of a given base object. The context must always be known for
accessing a role which resides in that context.7

Opposite, whenever a role object shall leave the context of its enclosing team, it is translated by
lowering to the base object it is attached to. Lowering is the inverse of lifting. It is implemented
by simply navigating the base link (otjld§2.2). As an illustration for how the language manages
lowering translations consider the following method of type Course:

Professor getProfessor() { return this.held by; }

7The signature shows that lifting requires two instances: a team and a base. Therefor it would have been possible
to allocate the mapping at the base objects instead of the team. However, base classes are developed and compiled
without any knowledge of being bound to a role, whereas a team knows about its roles. Thus, it is far easier to let
the team manage this mapping.

Stephan Herrmann / A Precise Model for Contextual Roles. 11

The return statement tries to pass a value of type Lecturer, whereas a return type Professor is
specified. The language treats this mismatch roughly equivalent to an up-cast: each Lecturer is
considered compatible to the type Professor, which is at run-time satisfied by translating the
Lecturer to its underlying Professor instance using lowering.
Fig. 6 abstractly illustrates both kinds of translations.
The above syntax for declared lifting (using the as keyword) is in fact an exception from the
general rule that lifting and lowering are handled transparently. The language is designed in such
a way, that the compiler can determine which points in the execution of a program cause a data-
flow across a team boundary (otjld§2.3(b), §2.2(b)). These data-flows apply lifting and lowering
as needed to adapt types, with the highly desirable effect that the team context can be fully
implemented in terms of its roles only, whereas the world outside a team should usually not
explicitly refer to any role.
For reasons of similarities to subtype-polymorphism the concept of translations using lift-
ing/lowering is called translation polymorphism Herrmann (2004b). It actually defines a new kind
of substitutability based on wrapping/unwrapping objects. As mentioned, lowering resembles the
situation of up-casts, which are always safe. Lifting on the other hand is similar to a down-cast,
however, without the danger of failure (like throwing a ClassCastException in Java), because
lifting will create the desired role instance if none already exists.

3.2. Fields

A role class may declare fields just like regular classes. Namespaces of a role and its base are
disjoint.

Static view
Fields declared in a role class are of course allocated for each role instance. This avoids the
problems of objects needing to grow dynamically, as we discussed in Section 2.2. Each new role
instance naturally allocates the corresponding fields as needed.
Base fields are only shared if specifically declared. The exact construct for accessing base fields
will be shown next.

Dynamic view
In order to access a field of its base object, a role must declare an indirection (otjld§3.5), as
the following declaration in role Participant illustrates:

String name() → get String name;

Such a declaration in a bound role class grants read access to a field called name which must be
defined in the base class (here: Student). The above declaration implicitly defines a role method
name(). Using the modifier set instead get and declaring an appropriate method signature will
in analogy grant write access. Any such field access from a role to its base need not pay attention
to access restriction as defined in the base class, marking the fact that the role-base relationship
is more intimate than normal associations (otjld§3.5(e), §3.4).
Forwarding a field access from a role to its base is a special case of so-called callout bindings
to be defined below.

3.3. Methods

A role class may declare methods just like regular classes. Again, namespaces of a role and its
base are disjoint.

Static view
A role may selectively share methods from its base and it may also override base methods. Any
base method that is not explicitly shared is not visible for the role. Understanding the mechanisms
behind sharing and overriding requires a look into the dynamic method dispatch.

12 Stephan Herrmann / A Precise Model for Contextual Roles.

ATeam

ARole ABase

rm1()
rm2()

bm1()
bm2()

callout

callin

Fig. 7. Two kinds of method binding.

Dynamic view
When a role class declares to share a method of its base class this technically boils down to
method forwarding along the base link. Such forwarding is established by a declarative method
binding (otjld§3) (cf. Fig. 3):

explain → explain;

Object Teams features method bindings in two directions. The forwarding from a role to its base
is called a callout binding. Just like in the playedBy clause, names of the role always appear at
the left-hand side whereas names of the base are at the right-hand side.
Callout bindings may have different levels of detail. In any case the base method may be made
available be a new name. Signatures may need to be given, and parameters can even be mapped
(otjld§3.2) in order to mend little incompatibilities between the base-implementation and how
this is to be seen in the team context.
Forwarding as established by a callout binding can be seen as lowering the call target. Similarly,
method arguments may also need to be lowered during forwarding caused by a callout binding
(otjld§3.3).
The point in declaring callout bindings is to establish a selective object-based inheritance
relation. Each feature mapped in a callout binding is shared between base and role. Unmapped
features are invisible at the role.
The careful reader might ask, whether a callout binding establishes simple forwarding or dele-
gation with late binding of this, as it would be required for true object-based inheritance. The
answer is that a callout binding by itself indeed causes simple forwarding. This has the effect,
that during the execution of the base method no information is available that the method is being
executed on behalf of a role. Therefor, any self-call within this method will normally stay at the
base object. Object-based inheritance, on the other hand, allows the role to override methods of
its base.
In ObjectTeams/Java forwarding and overriding are decoupled. It is the second binding direc-
tion by which method overriding can be specified. A callin method binding (otjld§4)

writeNeatly ← replace scribbleOnBoard;

has the effect, that calls to scribbleOnBoard will be intercepted and redirected to the role, in-
voking its own method writeNeatly8. The redirection caused by a callin binding involves lifting
of the call target (to look up the base object’s role) and also of method arguments if needed.
In all object-oriented languages, if a method is overridden in the context of regular inheri-
tance, it is always possible to invoke the original (inherited) method using a super-call. The same
applies to callin replacements in OT/J where a call to the original method is a achieved by a
so-called “base-call”, which forwards back to the original call target, the base instance. Instead
of super.m() we simply write base.m(). Note that the symmetry of lifting and lowering hides

8Following the tradition of aspect-oriented programming also before and after modes are available

Stephan Herrmann / A Precise Model for Contextual Roles. 13

the fact that a message is being dispatched between different instances. Role and base behave as
two sides of the same coin.
Summarizing the role-base relation, it can be described as a tunable object-based inheritance
relation. It supports sharing (callout bindings), overriding (callin bindings) and substitutability
(translation polymorphism).

3.4. Teams as Context for Roles

A central contribution of ObjectTeams/Java is the capability to group a number of roles into
what we call a team. Teams combine the properties of classes and packages: Conceptually they are
classes in that they have fields and methods, may apply inheritance9 and are instantiable. At the
same time, teams are packages in that they contain a set of classes. While this class containment
is very similar to inner classes in Java, we also provide the option to physically store the inner
classes in a directory representing the team (otjld§1.2.5), which emphasizes the package-face of
teams. By this combination teams are better scalable than classes (even with inner classes) and
they are first-class entities, which normal packages are not.
Visibility of methods and fields may use a team as a namespace to control encapsulation: private
features are visible in their enclosing class only, protected features can be accessed by a team and
all its roles, only public features can be seen from outside the team (otjld§1.2.1(e)).10

A team is declared as a class with the modifier team:

public team class Course ...

Any inner class of a team is automatically (i.e., without an additional modifier) a role class. In
diagrams the two-fold nature of teams as package and class is illustrated by using a package
symbol with additional compartments for fields and methods plus optionally a decorating “T”
icon.

Static view
Teams introduce another invariant (this property is directly adopted from Java inner classes):
each role instance is contained in a team instance. The role refers to the enclosing team instance
by a non-null immutable link. Being an object, too, a team instance may also hold explicit links
to contained role objects.
ObjectTeams/Java even provides means to enforce a strict discipline of encapsulation, which
prevents that a confined role will ever escape the context of its enclosing team instance (otjld§7)
Herrmann (2004a).
Various styles how modeling can benefit from having explicit support for context have already
been discussed in Section 2.4.

Dynamic view
The discussion of lifting has focused on data flows across a team boundary: when entering the
context of a team, a base object is lifted to its corresponding role, when leaving this context it is
lowered to its base. We will also take a look on how teams influence control flows in the system.
In order to do so, we must first define the concept of dynamic team activation.
At each point in time each team instance is either active or inactive. In our running example
each instance of team Course would be activated for the time of each lecture, only. This has the
effect that only for these periods the Professor changes his behavior answerPhone. As soon as the
class is over the Course will be deactivated resulting in the normal behavior to apply again.

9Team inheritance applies the concept of family polymorphism Ernst (2001) to allow for type safe covariant
refinement of a set of role classes. This concept is essential in the design of OT/J but it falls beyond the subject of
this paper.
10Visibility deviates from the rules of inner classes in Java. In Java private members of a inner class are visible
for the enclosing class, too. However, when regarding a team as a package, it must be possible to protect features
of a role against access even by the containing module.

14 Stephan Herrmann / A Precise Model for Contextual Roles.

Activating a team object is defined as enabling all callin-bindings that are defined in any of its
roles. Invoking a base method for which a callin binding exists while an appropriate team object
is active has the effect of intercepting the method call and redirecting the control flow to a role
within the active team.11 Conversely, deactivating a team instance disables all its callin bindings,
i.e., none of its roles will intercept any control flows. Team activation realizes the concept of
entering a context in the sense that only roles of an active team will influence the behavior of the
system.
As we already discussed also data flows are effected by entering/leaving a team context: passing
a base object into a team causes the base to be translated to (wrapped with) an appropriate role,
passing a role object out of a team causes it to be lowered. If a base object is lifted for which no
role object exists at that point in time a role is implicitly created on-demand.
This process can be fine-tuned by so-called guard predicates (otjld§5.4) Herrmann et al. (2005).
One possible use of a guard predicate is illustrated by the following code fragment taken from
Herrmann et al. (2005):

1 p u b l i c team c l a s s ATM {
2 Bank bank ;
3 . . .
4 // This role applies to all accounts that
5 // are not from the same bank as the ATM.
6 p u b l i c c l a s s Fore ignAccount
7 playedBy Account
8 base when (! (bank . e qua l s (base . getBank ())
9 {
10 deb i tWi thFee <− r e p l a c e d e b i t ;
11 d i s p l a y E r r o r <− r e p l a c e ge tBa l ance ;
12 . . .
13 }
14 }

The idea in this example is that an ATM treats “foreign” accounts differently from those belong-
ing to the same bank as the ATM. The difference in behavior is modeled in the role ForeignAc-
count which overrides the methods debit (to charge an extra fee) and getBalance (to disallow
displaying the current balance). Obviously, this role should not apply to all accounts. This is
declaratively ensured by the guard predicate shown in line 8. Base objects for which this predi-
cate evaluates to false will never be adapted with a ForeignAccount role. Essentially, the guard
is evaluated whenever either of the methods debit or getBalance is called on a base object. In
this situation the callin binding attempts to lift the base instance to a suitable role instance. This
lifting is, however, blocked by the guard. As a result of this blocking, the callin binding does not
fire for domestic accounts, their behavior is not adapted by a role.
Herrmann et al. (2005) also demonstrates that guards can be used at four levels of granularity
(team, role, role method, callin binding) and that they can apply either before the lifting (base
guard) or after (role guard). Details of these mechanisms are, however, beyond the scope of this
paper.

Coming back to the fundamental issue of activation, two styles of activating a team can be
distinguished:

– Whenever the control flow enters a team due to a call to a team-level method, this team
object is implicitly active until the method terminates (otjld§5.3).

11If more than one such team is active simultaneously, priority is determined mainly by the order of activation
(otjld§5.1, §4.8).

Stephan Herrmann / A Precise Model for Contextual Roles. 15

– Additional means exist to imperatively activate any number of team objects (otjld§5.2).

The policy of implicit team activation ensures that callout-defined forwarding only happens
while the team containing the role is active. By this rule all callin bindings of the role are effective
while the base method is executing. The desired behavior of overriding is established.
Imperative team activation adds another option. Even when a method of a base object is invoked
by a client which is unaware of any roles there may be a role in a currently active team which may
influence the behavior of the base object. Deactivating the team restores the original behavior.
This policy goes beyond traditional approaches to object-based inheritance. Those approaches
apply overriding only when a method is explicitly invoked on a role instance. In our experience
it is very desirable to be able to express that a role by its mere existence changes the behavior of
the base to which it is attached, even for clients which are unaware of the role. Team activation
and callin bindings can easily achieve this.
The concepts of callin bindings, team activation, guard predicates and lifting span a rich design
space. The common theme behind this group of concepts is the explicit formulation of situational
dependence of certain behaviors. Encoding such situational dependence in a more traditional
programming language requires much greater efforts in terms of inserting complex conditional
logic into many scattered places of the program.

3.5. On Assessment

Practical applications show that ObjectTeams/Java is indeed useful for building real world
software systems. However, the problem in assessing a programming language lies in the word
“useful”.
During several case studies we have collected data about code sizes, about structural properties
of the code as well as about the development process regarding productivity and maintainability.
All these data support our approach, yet they can never cover one central issue: ObjectTeams/Java
explicitly makes use of terms like “team”, “role” et cetera, in order to appeal to the developers’
intuition. This is in contrast with many recent programming languages, which, e.g., apply technical
terms as “inter-type declarations”, “mixins” etc.
The advantage of more “natural” terms as opposed to more “technical” terms can of course not
be measured, yet the subjective feedback we received from developers indicates that the concepts
of “roles” and “teams” actually inspire developers towards adequate and good software designs.
We understand that this is well in line with the experience that an ontology based on the notion
of roles also helps to build better domain models.

3.6. Postlude: why identity is a non-issue

Technically, roles in ObjectTeams/Java are distinguishable instances. The == operator will an-
swer false when comparing a role and its base. Conceptually, we still think of a role–base pair
as one entity. The automatic translation by lifting/lowering effectively supports this conceptual
unity. In day-to-day programming with ObjectTeams/Java we have not yet come to a situation,
where it was actually relevant to check for the identity of a role and its base, and where this
check should indeed answer true. However, the easiest of all solutions to the seeming dilemma
(see 2.1) has already been given by Richardson & Schwarz (1991): we only need to define two
separate operators: == will continue to distinguish a role from its base whereas a second operator
(in Richardson & Schwarz (1991) @= is used) considers all roles as identical to their base. In Ob-
jectTeams/Java we refrained from adding a new operator but simply prefer a predefined method
roleEQ.
Of course lifting and lowering greatly help to avoid the comparison of identity of roles and
bases: within the team everything can be expressed using roles only, outside the team roles should
be avoided alltogether. It could in fact be considered bad style if one wanted to compare a role
object to a base object.

16 Stephan Herrmann / A Precise Model for Contextual Roles.

Course

Enrollment

title
hasStarted()

grade
attendance

Student
**

enrolls_in

Fig. 8. An example for a relationship with an association class.

 Course

enrolled

*

1

Participant
grade
attendance

«playedBy»

1
Student

title
hasStarted()

Fig. 9. Modeling a relationship using a team.

4. Teams vs. Relationships

Object Teams focuses on embedding roles into a context called “team”. Another concept that
is closely related to roles is “relationship”. One may argue that also relationships deserve direct
and first-class representations in a programming language. When regarding relationships as com-
munication protocols, roles in Object Teams directly correspond to roles in a protocol. In this
case the enclosing team is nothing but a module around the pieces defining the protocol.
The correlation is a little more difficult to see, when regarding relationships from a data model-
ing perspective as in E/R modeling. To illustrate correlation in this case, we start with a textbook
example of a relationship as shown in Figure 8. In E/R modeling a primary reason for making
relationships first-class is the modeling power that results from admitting relationships to have
attributes just like classes. When moving from traditional E/R modeling to the UML this is trans-
lated to associations having an association class. The standard example (Fig. 8) reads as follows:
The enrolls in relationship between students and courses is enriched by the association class
Enrollment which allows to capture additional properties for each pair in the Course×Student
relationship. If only an object-oriented language is used for implementing this model, one has to
revert to introducing some kind of manager object that explicitly maps a Student to his or her
records regarding a specific Course. This auxiliary structure is needed for each instance of Course.
We have already seen a corresponding model in Object Teams, which only cosmetically differs
from the model in Fig. 8: The association class Enrollment is renamed to Participant and it is
made a role contained in a Course. The original enrolls in relationship is split into its two
directions: a regular directed association enrolled leads from a Course to its Participants, from
where the Students are reachable using lowering. Reversely, a lifting relationship allows to navigate
from a Student to its Participant role. Note, that the lifting relationship can already be seen as
a ternary relationship, relating an instance of each of Student, Course and Participant. Such a
ternary relationship is exactly how the three classes in Fig. 8 are connected.
The magic behind our solution lies in the language support for the lifting relation: each team
implicitly implements that functionality that in a plain object-oriented solution would have to
be realized by an explicit manager class. Each team instance is already a manager for all its
contained roles. The required book-keeping is given for free, just by using the keywords team and
playedBy.

Stephan Herrmann / A Precise Model for Contextual Roles. 17

Class

 Collaboration

Team Role
Contains1

*

InteractsWith

 RolePlaying

Role Base
PlayedBy

1

1

«playedBy»

«playedBy»

«playedBy»

«playedBy»

1
*

Fig. 10. A core meta model for Object Teams.

5. A Meta Model for ObjectTeams/Java

In this section we present a core meta model for ObjectTeams/Java in order to summarize the
structural relationships and outline some options how these concepts can be combined in actual
models.
During the development of several tools for ObjectTeams/Java we have developed several meta
models that on the one hand were technically motivated and on the other hand applied standard
object-oriented constructs for meta modeling as a way to facilitate an implementation in Java.
While doing so we fell into the trap of a naive meta model which contains three fundamental
classes: Team, Role and Base. While this looks natural at first, this approach fails to supports a
number of constellations that are in fact essential to Object Teams.
Those constellations have been identified previously as nesting, stacking and layering Herrmann
(2003). Nesting, e.g., refers to the idea that a team can be contained (nested) within an outer
team. However, by virtue of being a member of the outer team, the nested team is automatically a
role, too. This leads to a model, where Teams, Roles and Bases are not disjoint sets, but actually
each intersection is populated with legal elements, too.
Since overlapping classes are problematic in object-oriented design, we choose to use Object
Teams as the language for our meta model. The resulting core meta model can be seen in Figure 10.
The central idea behind this model is to leave the meta class Class untouched, i.e., we refrain from
sub-classing Class to produce Team, Role and Base. Instead we identify additional properties that
can be attached to a Class if it appears in a certain context. Classes appearing in a Collaboration
may play either the role of the Collaboration’s Team, or they may play a role of a Role within
the Collaboration. This models the fact that Teams and Roles only occur in the context of
a Collaboration, where each Collaboration has exactly one defining Team and any number of
interacting Roles.
It is easy now to represent team nesting as the example in Figure 11 illustrates. At the bottom
part of this Figure you see a concrete model depicting a team TOuter, which contains two roles,
R1 and TR. The latter is also a team containing an inner role R2. Above the dotted line you see
named instances of the meta model representing exactly the model from below. The interesting
element in this picture is TR. Basically, it is an instance of Class, but it also appears in two

18 Stephan Herrmann / A Precise Model for Contextual Roles.

TOuter

 TR

R2R1

R1:Class R2:ClassTR:ClassTOuter:Class

c1 :Collaboration

TOuter:Team

TR:RoleContains
1

InteractsWith

R1:Role

Contains

«playedBy» «playedBy» «playedBy»

c2 :Collaboration

TR:Team R2:Role

Contains1

«playedBy»

«playedBy»

Fig. 11. Team Nesting: concrete model and its representation using meta objects.

different contexts: Within collaboration c1 it plays the role TR:Role interacting with role R1,
whereas in the other it plays the role TR:Team containing role R2. Thus, the conceptual entity
TR consists of three parts which in conjunction define that TR has the properties of a Class
plus the properties of a Role (with respect to collaboration c1) and of a Team (with respect to
collaboration c2). This constellation could not be modeled easily using classes only.
In a similar vein a Class could have both a Base role and a Team role (which we call team
stacking), and a Class could have both a Base role and a Role role (which we call team layering)
Herrmann (2003).
Another issue that can be captured nicely in this meta model is the following dependence: if a
RolePlaying context should be created, which defines one class as the Role and another class as the
Base of a PlayedBy relationship, the RolePlaying depends on the existence of a Collaboration and
more specifically, the Role of RolePlaying depends on the fact that the corresponding Class already
is a Role in a Collaboration. This dependence is expressed by modeling that RolePlaying.Role is
played by Collaboration.Role. By transitive role playing it is ensured that the top role can only
exist if both the lower role and its base exist.
Thus, the meta model itself is an example of “team layering”, which stands for a situation
where the roles of an upper team are played by roles of a lower team, each team adding a layer
of structure and behavior to the system beneath. In our meta model team RolePlaying defines a
layer on top of team Collaboration. Both parts are joined in the class Collaboration.Role, which
is both a role of Collaboration and the base of RolePlaying.Role.
To further clarify terminology we identify a Collaboration.Role that has no RolePlaying.Role
associated to it as an unbound role whereas a RolePlaying.Role is always a bound role.

6. Applying Steimann’s criteria

In this section we iterate through the list of features given in Steimann (2000). For each item
we will briefly demonstrate how it is supported in ObjectTeams/Java.

Stephan Herrmann / A Precise Model for Contextual Roles. 19

T1

Base1

Base2

Role1

Role2

SuperRole

«playedBy»

«playedBy»

no common
super-type

Fig. 12. Mapping one role to several unrelated base classes.

(1) A role comes with its own properties and behavior. Role classes may declare fields and define
methods.
(2) Roles depend on relationships. In the previous section we have shown how relationships
with association classes can be translated into Object Teams models. Also, a team can be used to
model an n-ary relationship with all its roles being the “named places” that link to the underlying
base objects connected by the relationship. Since roles actually depend on an enclosing team this
feature is supported by ObjectTeams/Java.
(3) An object may play different roles simultaneously. A base object may have roles in different
teams. It may also have several different roles within the same team, which is only subject to
certain structural restrictions which are needed to keep the type-system sound (otjld§2.3.4).
(4) An object may play the same role several times, simultaneously. For the same base object
and the same role type, multiple roles can exist if they live in different team instances, which
makes them distinguishable. Thus, the only restriction in multiplicities is that OT/J does not
allow multiple roles of the same base object that are not distinguishable, neither by role-type nor
by team instance (cf. the signature of lifting on page 10). We could find no natural example (i.e.,
not involving computers), were the same player plays the same role more than once within the
same context.
(5) An object may acquire and abandon roles dynamically. Being separate instances, it is no
problem to create/destroy roles independently of their base. Roles may come into being either by
explicit creation or by an implicit lifting translation. Lifting can be further controlled by guard
predicates.
(6) The sequence in which roles may be acquired and relinquished can be subject to restrictions.
Interestingly, Steimann’s example Steimann (2000) to this item illustrates a dependency of a role
requiring another role as its base (see item (8)). While roles-of-roles can indeed express static
requirements at the type level, role guards in OT/J can additionally impose arbitrary dynamic
constraints on the automatic instantiation of a role. Callin bindings can be used to trigger the
acquisition of a role.
(7) Objects of unrelated types can play the same role. Although not supported by a specific
language construct, this features falls off easily using an unbound role and several sub-classes
(roles) which are bound to different base classes (see Fig. 12). In this example Base1 and Base2
— although being unrelated types — may both have a role of type SuperRole (realized either as
Role1 or Role2). This pattern allows all roles to share some implementation from the unbound
role and also adaptations to different base classes can be achieved by different callout mappings
in the sub-classes. Another interpretation of this pattern is, that the unbound role introduces an
a-posteriori super-type over (views of) a set of base classes.
(8) Roles can play roles. Since roles are instantiable, it is not a problem to attach one role to
another. Typing such constructs is, however, not trivial. In ObjectTeams/Java a role and its base
may not be contained in the same team instance. Practical use of ObjectTeams/Java has shown
that indeed very nice layered structures can be realized using roles-of-roles (see also Sect. 5).

20 Stephan Herrmann / A Precise Model for Contextual Roles.

(9) A role can be transferred from one object to another. To-date, ObjectTeams/Java does
not support this feature. Type-safety will never allow a role instance, whose class declares a
playedBy relation, to exist without a valid base link. Currently this constraint is enforced by the
immutability of the base link. If, more generally, non-null analysis would be used instead (which
is not practical in the current type-system of Java), it would be easy to add an API-function that
migrates a role from one base to another.
(10) The state of an object can be role-specific. Indeed, being an instance, each role may carry
specific state.
(11) Features of an object can be role-specific. Fields and methods can be defined in role classes
just like in any class. In Steimann (2000) the explanation of this item mentions multiple over-
loading of the same feature. ObjectTeams/Java supports overloading, renaming and overriding.
(12) Roles restrict access. All base features not bound by a callout binding remain invisible.
(13) Different roles may share structure and behavior. Here Steimann lists the options that (a)
a role class may inherit features from a super role and (b) a role instance may share features from
its base using delegation. In OT/J (a) is given by regular inheritance between role classes. (b) is
controlled by callout bindings, which selectively expose base features to the role.
(14) An object and its roles share identity. Using roleEQ comparison, a role and its base appear
as having one shared identity. Translation polymorphism establishes substitutability between a
role and its base.
(15) An object and its roles have different identities. Using the == operator the identity of roles
can indeed be distinguished from each other and from their base.

6.1. Evaluation

From applying the 15 features we conclude that ObjectTeams/Java almost fully supports all
desirable properties of roles. Only role migration (9) cannot easily be reconciled with static type-
safety in a language without proper null-analysis.
Some features might not be supported by specific declarative constructs, but rather need a little
explicit programming. Most notably, item 6 (sequence) could of course be supported by a much
more specific sub-language such as regular expressions. However, having guard predicates in the
language is already a great help for this task and we would consider more specific support for this
item as undue language bloat. ObjectTeams/Java even supports features which were said to be
contradictory (14 and 15) by passing the option to the programmer whether a specific identity
check should be strict (==) or not (roleEQ).

7. Discussion and Related work

When discussing the concept of roles in the context of ontologies, it is a common understanding
that roles depend on a player and/or a context Masolo et al. (2004); Loebe (2007). This cor-
responds to the structural constraints imposed on roles in OT/J, where unbound roles depend
on the enclosing team, only, whereas bound roles additionally depend on a player. Unlike Loebe
(2007) we do not introduce a player universal, i.e., we regard the extension of players as an im-
plicit subset of the base class’s extension rather than making this extension explicit. Loebe (2007)
also distinguishes different kinds (“types”) of roles (relational, processual, social). By contrast,
OT/J only provides a very generic concept for roles, which should be suitable for modeling all
kinds of roles. This means, while the concept of roles is made an intrinsic part of the language,
further distinctions are left to concrete models written in the language. In comparison to work
on foundations of ontologies, the design of OT/J intentionally restricts the number of structural
concepts rather than emphasizing the number of variations and perhaps corner cases that are
observed, e.g., in sociology.

Stephan Herrmann / A Precise Model for Contextual Roles. 21

On the other hand, a programming language must be complete and precise with respect to
behavioral aspects, which are not discussed in this depth in works on ontologies. We hope that
the considerations about forwarding, delegation, overriding and dispatch in general help in un-
derstanding the behavioral relationships between roles, players and contexts.
Steimann (2000) discusses the tension whether roles are super-types or sub-types of their “nat-
ural types” (base types). He concludes that two separate hierarchies should be maintained for
natural types and role types that are connected by a role-filler relationship. This separation into
unrelated concepts (roles and natural types) significantly reduces the possibilities to combine the
fundamental concepts, e.g., roles of roles are not possible in his approach. OT/J accounts for the
tension between roles as sub-types and super-types by the concept of translation polymorphism.
The answer in OT/J is: strictly speaking no sub-typing relation exists between a role and its base
in either direction. However, substitutability is given in both directions using lifting and lowering.
Additionally, generalizing over unrelated base types is supported by the indirection shown in
Figure 12.
Programming language support for roles can be traced back all the way to SELF Ungar &
Smith (1987) which demonstrated the universal applicability of object-based inheritance paving
the road for the Treaty of Orlando Stein et al. (1989). OT/J supports both kinds of sharing
discussed in Stein et al. (1989): (1) Inheritance enables a sub-class to share all features of its
super-class; inherited methods can be overridden; inheritance can be applied to all kinds of classes
including teams and roles. (2) The playedBy relation together with callout bindings enable a role
to share selected features of its base class; by callin bindings a role class can override any method
existing in the base class.
Aspects as introduced in Richardson & Schwarz (1991) already come quite close to our un-
derstanding of roles.12 This is one of the earliest approaches that indeed integrates a concept of
roles (“aspects”), which is based on delegation, into a class-based and statically typed language.
Interestingly, already aspects have the ability to rename a feature that an aspect acquires from
its base. This corresponds to our concept of callout bindings, which may also use different names
at the base and role sides. We are not aware of an implementation of the Aspects concept. A
comparison of five approaches including Richardson & Schwarz (1991) can be found in Kappel
et al. (1998). In this paper a special focus lies on analyzing the different strategies of method
dispatch, which supports our understanding that indeed method dispatch is a key feature for the
integration of a role concept into a programming language. None of the approaches discussed in
Kappel et al. (1998) support a concept of context.
For the development of ObjectTeams/Java, Aspectual Components Lieberherr et al. (1999)
were a major source of inspiration. In that model contexts are called “components” containing a
number of “participants”. A separate “connector” is used for binding participants to base classes.
A connector can define method bindings, however, the distinction of binding directions (callout
vs. callin) is not explicit in that approach.
In the tradition of Aspectual Components, Dynamic View Connectors Herrmann & Mezini
(2000) uses the techniques for component integration and the language prototype Lua Aspect
Components (LAC Herrmann & Mezini (2001)) directly paved the road for ObjectTeams/Java.
More recently, CaesarJ Mezini & Ostermann (2003) can also be seen as a successor of Aspectual
Components and also shows some features which have been introduced in ObjectTeams/Java.
CaesarJ, however, leaves more of the infrastructure code to be written explicitly by the program-
mer. E.g., the base link is a plain reference to be used directly in client programs, and lifting
(called “wrapper-recycling”) must be requested explicitly. The difference can be interpreted such
that CaesarJ defines a more abstract model with the goal to capture more styles of programming,
whereas OT/J more directly relates to the metaphors of roles and teams.

12This notion of “Aspect” is independent of and pre-dates “aspect-oriented programming”.

22 Stephan Herrmann / A Precise Model for Contextual Roles.

On a different branch, Truyen (2004) has developed similar technology called LasagneJ for the
purpose of supporting multiple client-specific contexts in distributed systems. The motivation
behind LasagneJ is to support context-sensitive customization of services that are shared over
the internet. While LasagneJ supports instantiable collaborations similar to our teams, a collabo-
ration in LasagneJ is instantiated only once per application and statically associated to a feature
identifier. This supports the desired customization but it does not make collaborations first-class
entities as teams are in OT/J.
Finally, the Chameleon model Graversen (2004) follows the tradition of Kristensen & Østerbye
(1996). Chameleon might support a few more corner cases regarding individual roles, but in that
work support for context has not been fully elaborated.
Several of the approaches mentioned above are also influenced by aspect-oriented programming
(AOP) Kiczales et al. (1997). The connection is twofold: (1) Roles and aspects are two different
incarnations of the concept to use views to partition a model, knowing that this kind of parti-
tioning has to deal with overlap. AOP is negatively defined as a solution to the problems of cross-
cutting (scattering and tangling), i.e., the inability to modularize several concerns simultaneously
if using traditional object technology only. Due to this negative definition the (technical) notion
of aspects has no commonly accepted intrinsic meaning. As a consequence the use of aspects for
conceptual modeling is controversially debated, to say the least. To the contrary, roles have ini-
tially been defined for the sake of conceptual modeling. After precise semantics have been added
to the concept, roles have a very good coverage of all phases in the software life-cycle. (2) Both
roles and aspects add a fundamentally new kind of control flows to programming languages, that
transcends the explicit style of method calls. Roles apply method call interception to allow for a
role instance to override methods of its base instance. Aspects more generally apply join point
interception to weave aspect behavior into a base application. The difference between roles and
aspects is the set of available join points: roles normally override whole methods, only. Aspects on
the other hand can hook into individual instructions of some kind like: calling a method, throwing
an exception or accessing a field (depending on the language’s join point model). The common
theme is, that parts of a program (“base”) can be adapted without modifying the base’s source
code. We claim that method call interception in the vein of overriding is far easier to understand
than complex “pointcuts” referring to sets of individual instructions. Also maintenance, and more
specifically refactoring, is significantly more difficult in an aspect-oriented program than in a
role-based program. Some more ideas on this comparison can be found in the contributions to a
workshop called “Views, Aspects and Roles (VAR’05)”13

Aspect-oriented programming is also used in Pearce & Noble (2006) for implementing rela-
tionships as first-class entities by so-called Relationship Aspect Patterns. The patterns presented
mainly solve the problem that bi-directional relationships tend to be scattered over both classes
involved when using standard object-oriented techniques. The use of AOP is in fact limited to
so-called intertype declarations, which are a means to add features to a class without editing the
class’s source code. The same designs can be realized using roles instead of aspects, where the
features to be added are implemented as features of a role. Pearce & Noble (2006) also touches
some performance issues. When transforming the design to use roles, instantiation and look-up
will cause some overhead. However, with just a little help the OT/J compiler could transparently
inline those role-objects which would then produce roughly the same performance properties as
the solutions in Pearce & Noble (2006). On the other hand, Relationship Aspect Patterns address
only issues of data modeling and thus support a very limited notion of roles, actually only the
two generic roles “from” and “to” of a binary relationship are mentioned.
More recent approaches which also combine roles with explicit context are powerJava Baldoni
et al. (2005) and EpsilonJ Tamai et al. (2005). Despite being developed independently these two
languages exhibit strong similarities among each other and with OT/J. Most of the concepts of

13See http://swt.cs.tu-berlin.de/∼stephan/VAR05

Stephan Herrmann / A Precise Model for Contextual Roles. 23

powerJava and EpsilonJ can easily be mapped to corresponding concepts in OT/J demonstrating
that all three languages are converging towards a common solution. In powerJava and EpsilonJ
the issues of role attachment and the base-to-role navigation are handled explicitly in the source
code. Most of this is subsumed in our concept of lifting. Through the mostly implicit nature of
lifting we achieve a better separation between the worlds of roles and base objects. Both mentioned
languages lack the concept of persistently activating a context.
In this paper we have related ObjectTeams/Java to the general concept of roles as classified in
Steimann (2000). Our analysis has shown, that ObjectTeams/Java fulfills most of the requirements
for roles, to an extent that, to the best of our knowledge, has not been demonstrated for any
other approach, yet.

7.1. Current state and future work

The design of the language ObjectTeams/Java is mostly complete and is well integrated with
all features of its host language Java, as documented in the comprehensive language definition
Herrmann et al. (2007). As a final step in language design we have designed a sub-language for
selecting join points for aspect integration. Note, that callin bindings already provide a basic
mechanism for aspect-oriented programming in ObjectTeams/Java. The join point language has
not yet been integrated into the stable branch of the tooling. Following the arguements above,
even when sophisticated join point is available, this technique should be used only sparingly, as
it may conflict with the demands of maintenance and especially refactoring.
The compiler for ObjectTeams/Java is based on the Eclipse Java Development Tooling. Eclipse
has been extended in many ways to effectively support the development of software using Ob-
jectTeams/Java. This IDE is freely available14 and we have performed an industrial case study
for empirically evaluating the benefit of using ObjectTeams/Java for software development. This
case-study plus class-room use and diploma theses give rise to confidence in ObjectTeams/Java
being a sound approach that actually supports improved modularity and a very good alignment
from conceptual modeling to an implementation using the very same concepts.
At a technical level applying OT/J for the implementation of its own tools Herrmann &Mosconi
(2007) has demonstrated significantly improved maintainability of components that re-use and
adapt existing components.
Design notations for Object Teams have been discussed Herrmann (2002a); Herrmann et al.
(2004) and prototypical tool support using UML profiles and code generation is available.
In our research we mainly follow a bottom-up approach. We hope that providing a program-
ming language, whose technical details have been settled over a number of years, provides a solid
foundation for developing a comprehensive method for seamless software development using not
only objects but also roles and collaborations as first-class concepts throughout the software life-
cycle. Defining a programming language that precisely defines the high-level abstractions “team”
and “role” proves that these concepts are indeed well-defined. We hope that ontology-driven ap-
proaches can be aligned with the concepts presented in this paper, such that an implementation
in OT/J could be the final result in a seamless development process. Most of the success of object-
orientation is due to an improved seamlessness over earlier paradigms. We are convinced that
Object Teams have the potential of taking seamlessness one step further and that software devel-
oped in the new approach may exhibit better modularity and also traceability from requirements
to code.

14http://www.objectteams.org/distrib/otdt.html.

24 Stephan Herrmann / A Precise Model for Contextual Roles.

Acknowledgment

We would like to thank an anonymous reviewer who has suggested to provide a meta model
of Object Teams using Object Teams, an idea that actually solved a dilemma of previous meta
models we had used.

References

Albano, A., Bergamini, R., Ghelli, G. & Orsini, R. (1993). An object data model with roles. In VLDB ’93:
Proceedings of the 19th International Conference on Very Large Data Bases (pp. 39–51). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

AOSD’02 (2002). Proc. of First International Conference on Aspect Oriented Software Development. Enschede,
Netherlands: ACM Press.

AOSD’03 (2003). Proc. of 2nd International Conference on Aspect Oriented Software Development. Boston, USA:
ACM Press.

Baldoni, M., Boella, G. & van der Torre, L. (2005). Roles as a coordination construct: introducing powerjava. In
Proceedings of MTCoord05.

Bäumer, D., Riehle, D., Siberski, W. & Wulf, M. (2000). Pattern Languages of Program Design 4, chapter Role
Object, (pp. 15–32). Addison-Wesley.

Ernst, E. (2001). Family polymorphism. In Proc. of ECOOP’01, number 2072 in LNCS (pp. 303–326). Springer
Verlag.

Graversen, K. (2004). Role collaborations. In Workshop on Software-Engineering Properties of Languages for
Aspect Technologies (SPLAT) at AOSD’04.

Herrmann, S. (2002a). Composable designs with UFA. In Workshop on Aspect-Oriented Modeling with UML at
AOSD’02 (2002).

Herrmann, S. (2002b). Object Teams: Improving modularity for crosscutting collaborations. In Aksit, M., Mezini,
M. & Unland, R. (Eds.), Proc. Net Object Days 2002, Volume 2591 of Lecture Notes in Computer Science.
Springer.

Herrmann, S. (2003). Orthogonality in language design – why and how to fake it. In Workshop on Object-oriented
Language Engineering for the Post-Java Era, at ECOOP. Darmstadt.

Herrmann, S. (2004a). Confinement and representation encapsulation in object teams. Technical Report 2004/06,
Technical University Berlin.

Herrmann, S. (2004b). Translation polymorphism in Object Teams. Technical Report 2004/05, Technical University
Berlin.

Herrmann, S., Hundt, C. & Mehner, K. (2004). Mapping use case level aspects to objectteams/java. In Workshop
on Early Aspects at OOPSLA’04.

Herrmann, S., Hundt, C., Mehner, K. & Wloka, J. (2005). Using guard predicates for generalized control of aspect
instantiation and activation. In Dynamic Aspects Workshop (DAW’05), at AOSD 2005. Chicago.

Herrmann, S., Hundt, C. & Mosconi, M. (2007). ObjectTeams/Java Language Definition version 1.0 (OTJLD).
Technical Report 2007/03, Technische Universität Berlin.

Herrmann, S. & Mezini, M. (2000). PIROL: A case study for multidimensional separation of concerns in software
engineering environments. In Proc. of OOPSLA 2000.

Herrmann, S. & Mezini, M. (2001). Combining composition styles in the evolvable language LAC. In Proc. of
ASoC workshop at the 23nd ICSE.

Herrmann, S. & Mosconi, M. (2007). Integrating object teams and OSGi: Joint efforts for superior modularity. In
Proc. of TOOLS Europe 2007, also in: Journal of Object Technology, 6(9), 2007.

Kappel, G., Retschitzegger, W. & Schwinger, W. (1998). A comparison of role mechanisms in object-oriented
modeling. In K. Pohl, A. Schürr, G. V. (Ed.), Proceedings Modellierung’98 (pp. 105–109).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. & Irwin, J. (1997). Aspect Oriented
Programming. In Proceedings of ECOOP ‘97, number 1241 in LNCS (pp. 220–243).

Kristensen, B. & Østerbye, K. (1996). Roles: Conceptual abstraction theory and practical language issues. Theory
and Practice of Object Systems, 2(3), 143–160.

Lieberherr, K., Lorenz, D. & Mezini, M. (1999). Programming with Aspectual Components. In Technical Report.
Northeastern University.

Loebe, F. (2007). Abstract vs. social roles – towards a general theoretical account of roles. Applied Ontology, In
this issue.

Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A. & Guarino, N. (2004). Social roles and
their descriptions. In D. Dubois, C. Welty, M.A. Williams (eds.), Proceedings of the Ninth International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR2004) (pp. pp. 267–277). Whistler,
Canada.

Mezini, M. & Ostermann, K. (2003). Conquering aspects with caesar. In AOSD’03 (2003).
Pearce, D. J. & Noble, J. (2006). Relationship aspect patterns. In Proc. of the European Conference on Pattern
Languages of Programs (EuroPLOP).

Stephan Herrmann / A Precise Model for Contextual Roles. 25

Richardson, J. & Schwarz, P. (1991). Aspects: extending objects to support multiple, independent roles. In
Proceedings of the 1991 ACM SIGMOD international conference on management of data.

Steimann, F. (2000). On the representation of roles in object-oriented and conceptual modelling. Data and
Knowledge Engineering.

Steimann, F. (2001). Role = interface: A merger of concepts. Journal of Object-Oriented Programming, 14(4),
23–32.

Stein, L. A., Lieberman, H. & Ungar, D. (1989). A shared view of sharing: The Treaty of Orlando. In W. Kim
& F. H. Lochovsky (Eds.), Object-Oriented Concepts, Databases and Applications (pp. 31–48). Reading (MA),
USA: ACM Press/Addison-Wesley.

Tamai, T., Ubayashi, N. & Ichiyama, R. (2005). An adaptive object model with dynamic role binding. In Proc.
International Conference on Software Engineering (ICSE2005) (pp. 166–175).

Truyen, E. (2004). Dynamic and context-sensitive composition in distributed systems. PhD thesis, Katholieke
Universiteit Leuven.

Ungar, D. & Smith, R. B. (1987). Self: The power of simplicity. In Proc. of OOPSLA’87.
VanHilst, M. & Notkin, D. (1996). Using role components to implement collaboration-based design. In Proc. of
OOPSLA’96, Volume 28(10) of ACM SIGPLAN Notices.

Veit, M. & Herrmann, S. (2003). Model-View-Controller and Object Teams: A Perfect Match of Paradigms. In
AOSD’03 (2003).

Wieringa, R. & de Jonge, W. (1995). Object identifiers, keys, and surrogates. Theory and Practice of Object
Systems, 1(2), 101–114.

