
Mapping Use Case Level Aspects to ObjectTeams/Java

Stephan Herrmann∗ Christine Hundt∗ Katharina Mehner∗
Technical University Berlin

{stephan,resix,mehner}@cs.tu-berlin.de

ABSTRACT
Aspect-Oriented Software Development aims at supporting
separation of crosscutting concerns throughout the full soft-
ware lifecycle. In this contribution we focus on lifecycle sup-
port for crosscutting concerns with internal structure and
complex behaviour. In order to make transitions between
phases more seamless, support for such concerns is needed
in all phases. In the past the programming language Ob-
jectTeams/Java has been developed which supports encap-
sulation of role-based collaborations and therefore is a suit-
able target platform for complex crosscutting concerns. We
demonstrate how to develop requirements, analysis, and de-
sign models for this target language.

1. INTRODUCTION
Aspect-oriented software development (AOSD) aims to sup-
port the separation of concerns which would be crosscutting
with respect to pure object-oriented modularisation struc-
tures. As an extension of object-orientation AOSD provides
new structuring constructs to avoid tangling of unrelated
concerns and to prevent scattering of one concern over sev-
eral locations. These advanced modularisation techniques
allow for encapsulation of concerns in so called aspects.

The majority of existing AOSD approaches mainly address
the implementation of aspects by focusing on aspect-oriented
programming languages. As concerns emerge already in the
earlier phases of the development process, it is desirable to
provide aspects in requirements modeling, analysis and de-
sign as well.

In well-known aspect-oriented programming languages, such
as AspectJ [9], aspects tend to suffer from some restric-
tions when comparing to regular classes. These restrictions
mainly affect the ability to instantiate (and activate) aspects
programmatically and limitations to the use of inheritance
and polymorphism. Thus, aspects are not full-blown first
class programming entities. To provide flexible instantia-
tion and activation of aspects and to provide encapsulation
and specialisation of collaborating aspects we have devel-
oped the programming language ObjectTeams/Java [7, 11].
This language decorates Java classes with roles which serve
to implement potentially crosscutting concerns. Role be-
haviour is intrinsically bound to class behaviour by inter-
cepting method calls to Java objects and by forwarding role

∗This work has been supported by the German Federal Min-
istry for Education and Research under the grant 01ISC04A
(Project TOPPrax).

instance methods to objects. A collaboration of roles is en-
capsulated in a package-like structure called team, which
also has all properties of a class.

Since the ObjectTeams/Java language has matured and since
we are starting to use it in a non-academic context [17] we
are now aiming at full lifecycle support. In this vein, our
first step has been to provide design support by means of an
extension to UML class diagrams called UML for Aspects
(UFA) which allows the modeling of the ObjectTeams/Java
relevant features [6]. Also, an extension to UML sequence
diagrams has been developed which shows role and class in-
teractions [3].

While recent publications provide considerable advances of
AOSD towards earlier phases of the software lifecycle [12,
13], we still see two issues that need to be addressed for full
lifecycle support for aspects.

1. Seamlessness requires that isolated proposals for as-
pect oriented modeling are integrated into a continu-
ous method.

2. Relevant use cases may need refinement in later phases
yielding structured sub-models. When some use cases
are identified as aspects a model of aspects is needed
that specifically supports structural and behavioural
refinement.

Regarding the first issue, in this paper we sketch a transition
from an aspect-oriented use case model towards an aspect-
oriented design, which seems to be the major remaining gap
in the life-cycle.

When projecting typical non-functional aspects to the anal-
ysis level, some of these aspects shrink to a single sentence
like: “Objects of class Foo are persistent”, which can easily
be modeled by a tagged value in the UML model, requiring
no further modeling support. Complexity of such concerns
is introduced only during later phases. Identifying use cases
as aspects mainly reveals those aspects that bear more in-
ternal complexity, like workflows or collaborations of sev-
eral communicating entities. ObjectTeams/Java specifically
supports such collaborations, which is why we believe that it
has the potential for the desired full-lifecycle seamlessness.

This paper reviews some recent work regarding use cases and
aspects in section 2.1. We outline our process in section 2.2.

1



Section 3 illustrates the requirements elicitation of an aspect
and the mapping into a design for ObjectTeams/Java using
a simple example. We discuss emerging lifecycle support for
AOSD in section 4 and conclude in section 5.

2. A USE CASE DRIVEN APPROACH
2.1 Background
Different approaches have been proposed to model crosscut-
ting concerns on the use case level.

Sousa et al. [16] propose to model crosscutting concerns as
use cases and provide a new relationship between use cases
which is called �crosscut�. This relationship defines a con-
dition for the extension, the affected points in the execution
of the affected use case in terms of its steps, and a so called
composition rule operator. The operator follows the ideas of
AspectJ by distingushing after, before, override and wrap-
ping mode of composition. We will refer to the composition
rule operator simply as mode. For an example of this nota-
tion refer to figure 3.

Unlike the invasive nature of the �extend� relationship1,
this approach uses a non-invasive specification of joinpoints
rsp. pointcuts. The places in the execution which trigger
the execution of the crosscutting use cases are only defined
in the crosscut but not in the basic use case.

The authors provide the following heuristic to distinguish
between the �include� relationship, the �extend� rela-
tionship and the newly defined �crosscut� (assume for the
heuristic that use cases A, B are given):

If the execution of the use case B represents a
course that needs to be applied in the use case
A, but (i) the use case A does not depend on
the execution of the use case B to accomplish its
primary goal; and (ii) the use case B is not a
specific course of the use case A and therefore
can be applied in other use cases; the use case B
crosscuts the use case A [16].

AspectU [15] also provides an aspect-oriented extension to
use cases. It introduces an aspect entity which is structured
similarly to an AspectJ aspect consisting of pointcuts and
advices.

The pointcut language matches steps from the use cases
and provides binding predicates to match context entities
involved in steps. This is also a non-invasive approach as
the joinpoints are not specified in the basic use cases.

The advices contain steps and extensions as found in use
cases. Extensions are elements of a use case which specifies
what a use case does when it cannot complete the main
scenario. The advice specifies in an AspectJ like manner
whether it is executed before, after or around rsp. instead
of the specified step. If the advice contains an extension the
aspect can specifiy whether it wants to abort the rest of the
use case.

1With �extend� the extension points have to be explicitly
listed in the extended use case.

2.2 Our Approach
For dealing with aspects which have internal structure and
complex behaviour we advocate the approach by [16] which
encapsulates these aspects as use cases. Moreover, we see
the language ObjectTeams/Java [7] as a suitable target plat-
form for internally structured aspects because it supports
collaboration of roles. Thereby, the transformation between
requirements, analysis, and design can be made more seam-
less.

Our approach aims at covering the development lifecycle
including the following phases:

• requirements modeling

• analysis

• design

• implementation

We shortly sketch the intention of each of these phases.

Requirements modeling
Requirements modeling is concerned with providing rigorous
use case models [5]. Such models consists of graphical use
case diagrams and of detailed descriptions of each use case
containing main and secondary scenarios in terms of steps,
as well as triggers, pre- and postconditions. An activity
diagram can be used to specify a use case and its steps more
formally.

In this contribution we will base our development process
on the aspect-oriented extension to use cases by [16]. Their
approach can be seen as a refinement of standard use case
driven modeling. In general, a development process target-
ing ObjectTeams/Java as a design and implementation plat-
form can start from a refined use case modeling as well as
from a standard use case modeling. While the refined mod-
eling already makes some criteria explicit which will steer
the subsequent analysis and design process these criteria can
also be applied starting from a standard use case modeling
approach.

In this contribution we will not consider non-functional re-
quirements (NFRs). Also, we will not consider viewpoint
driven requirements modeling, although this might fit very
well with our approch.

Analysis
We view our analysis step in correspondence with standard
object-oriented analysis such as in [10]. This step takes as
input the domain model and the sequence-oriented activity
diagrams rsp. the use case steps and has to identify collabo-
ration using nested method calls among the domain entities.
In addition, new objects are identified for the user interface
at the system boundary or for controling the behaviour of a
use case. The analysis results mainly in providing scenarios
for the identified collaborations by means of UML interac-
tion diagrams which we will use in the form of sequence
diagrams here.

2



Figure 1: Flight booking domain class diagram

We also use the standard UML stereotypes from the pro-
file for software development processes [5] for classifying
the domain objects and the newly introduced objects. A
�boundary� object represents the system boundary and
handles user input. A �controler� object steers the con-
trol flow within a use case. An �entity� object represent
passive objects participating in a number of collaborations
(see figure 6 for the graphical notations of the stereotypes.)

We perform this kind of analysis also for the crosscutting
use cases. Note, that sequence diagrams cannot describe
complete class behaviour. We omit showing how new objects
and methods are reflected in augmenting the class diagram.
Note, that the analysis step is independent from our target
language ObjectTeams/Java and hence does not distinguish
between classes, roles, and teams.

Design
The design targets ObjectTeams/Java [7]. The design takes
the previously developed analysis models as input and aims
at identifying classes, roles, and teams. Objects from dif-
ferent use cases rsp. their analysis sequence diagrams are
merged into classes or become roles. Collaboration among
objects in these sequences is correspondingly transformed
into class-role interaction.

To capture designs for this target we have developed a UML
profile called UFA based on class diagrams [6]. UFA cap-
tures all relevant concepts of ObjectTeams/Java needed dur-
ing the design, i.e., the concepts of teams and roles. Se-
quence diagrams are extended to show role-based behaviour
[3].

Implementation
Designs in UFA accompagnied with extended sequence dia-
grams can easily be implemented in the ObjectTeams/Java
programming language. Here, we cannot go into details.
Implementations in ObjectTeams/Java have been presented
in [7, 18].

3. ELICITATING AND MAPPING ASPECTS
In this section we will demonstrate how to identify cross-
cutting use cases with internal structure and behaviour and
how to map them to a design for ObjectTeams/Java. We
will illustrate our concepts with a running example which is
a flight booking system.

Flight booking example
Passengers book flights consisting of individual segments.
Passengers are registered in the system and can be unregis-

Staff Member

administer
segment

administer
flight

administer
passenger

book flight

register bonus
passenger

unregister bonus
passenger

cancel booking

Figure 2: Flight booking use cases

book flight

Staff Member

Condition:
{is bonus passenger}
mode: after 
step: book segments

administer
passenger

register bonus
passenger

<<crosscut>>

select passenger

earn bonus

<<include>>

<<extend>> extension points
find passenger

Condition:
{passenger not registered}
extension point: find pass.

pay

pay with bonus

<<crosscut>>

<<include>>

Condition:
{enough bonus collected}
mode: override 
step: transfer money

Figure 3: Refined flight booking use cases

tered as well. Both is conducted by staff members on behalf
of passengers. Flights and flight segments can be admin-
istered by staff members. Unbooking of flights is possible,
too.

Passengers can register for a bonus scheme which enables
them to collect bonus miles for flights they book. When
a flight is booked the bonus is collected depending on the
length of the flight segments and possibly depending on
other conditions (for example the number of segments of
the flight).

3.1 Requirements Modeling
Figure 1 shows a simple initial class diagram for the flight
booking domain. The passenger books flights which consist
of several segments. A passenger can be registered for a
bonus scheme. Note, that this diagram specifies the struc-
ture of domain entities and that it is developed in parallel
with the initial specification of system behaviour by means
of use cases.

Figure 2 shows an initial use case diagram identifying the
main tasks of a staff member. Figure 3 shows how a subset
of these use cases, which are related to use case book flight,
is refined with additional use cases and with use case rela-
tionships. We also provide a detailed description of the use
cases which will be of interest in the following. The use case
book flight includes the use case select passenger which is ex-

3



tended by the use case administer passenger meaning that
the included use case is mandatory while the extension is
only needed if the passenger’s data is not yet in the system.
The use case book flight also includes the use case pay.

The steps of use case book flight are described in table 1.
The precondition of this use case is a client wishing to make
a booking. The steps are also presented in the activity dia-
gram in figure 4.

Use case book flight

Actor staff member
Trigger passenger gives booking order to

staff member
Precondition flight exists
Postcondition each segment of the flight is booked
Main scenario 1. select flight

2. select passenger
3. reserve segments
4. book segments
5. pay

Table 1: Use case book flight

Our focus lies on the bonus requirements. In refining the
book flight use case we have defined a use case earn bonus.
This use case describes how a registered bonus passenger
is able to receive a bonus for a booked flight. We consider
this a crosscutting use case following [16] because the bonus
collection is not an essential part of the booking and does
not contribute to the goal of booking either. This fulfills
the first criterion for crosscutting relationships as outlined
in 2.1. In our small scale example we cannot discuss the
criterion whether this use case also contributes to other use
cases. But it is quite common today that the same bonus
system does not apply to booking flights only but also to
purchasing other goods.

Use case earn bonus

Actor staff member
Trigger purchase of bonus segments
Precondition passenger registered
Postcondition bonus for each segment earned
Main scenario 1. get segment distance

2. calculate bonus for segments
3. sum
4. credit

Table 2: Use case earn bonus

Technically, we use the stereotype�crosscut� to denote the
special relationship between the two use cases. The condi-
tion under which the use case earn bonus is executed is de-
noted as {is bonus passenger} saying that the passenger has
to be registered for the bonus in order to collect a bonus.
The step after which the use case can execute is book seg-
ments. The mode is after saying that the bonus is collected
after the booking is completed. The steps of the use case
earn bonus are presented in table 2 and in figure 5. The
trigger of this use case is not a user interaction such as in
the use case book flight but an activity in another use case
which is suitable for earning a bonus.

Figure 4: Activity diagram for book flight

Figure 5: Activity diagram for earn bonus

The use case pay with bonus is also considered to be cross-
cutting assuming that for a bonus passenger it is checked au-
tomatically whether he or she can pay with the bonus and
assuming that the same could be applied to paying other
goods. This example is not discussed further in this contri-
bution.

3.2 Analysis
As explained in the approach, this is a highly creative phase
which requires to translate from the sequence-oriented activ-
ities and steps into the message rsp. method-oriented object
collaborations with nesting of calls.

We show such a translation for the use case book flight from
figure 3. This translation involves the domain classes (see
figure 1) for identifying objects involved in a use case. It in-
volves also the introduction of new objects. In the example,
we identify a boundary object bookingUI for interaction with
the staff (see figure 6). The controler object bookhandler
controls the booking by sending corresponding messages to
the entity objects passenger, flight, and segments (encap-
sulating a multiobject) The latter three correspond to the
domain classes.

Typically, not all steps (see table 1) rsp. activities (see figure
4) can be mapped one to one to a method call. For instance,
the activity book segments cannot be mapped to a method
call from passenger to segments because there is no link
from passenger to the segments (see class diagram in figure
1). Therefore, the call has to be mediated for example by
the flight object.

4



«controler»«boundary object» «entity»

Figure 6: Analysis sequence diagram for book flight

We also envision such a translation for the crosscutting use
cases earn bonus from figure 3 resulting in the sequence di-
agram at figure 7. Apparently, this use case is not trig-
gered by a staff member interaction. Therefore, we invent a
method call earn flight bonus as a trigger without saying at
this point in time how this relates to the step book segments
chosen as a trigger in the use case diagram. We will consider
this only in the design phase. Apart from this the sequence
diagram is established as usual. It contains a controler ob-
ject bonushandler and two entity objects passenger and seg-
ments. Note that in this step we do not distinguish between
a passenger involved in booking and a passenger involved in
claiming a bonus although it is obvious that different parts
of their behaviour participate in the two different sequence
diagrams. The sequence diagrams are different views of the
same domain entity.

3.3 Design
UFA and extended sequence diagrams
UML for aspects (UFA) is an extension to UML based on
the concepts of the programming language ObjectTeams/-
Java [6]. UFA captures the programming model behind Ob-
jectTeams/Java and allows a straight forward mapping into
ObjectTeams/Java.

The basic idea of this programming model is to decorate
classes with roles which are special classes. A decorated
class is called base. An object and its role instance can
be seen as an aggregated entity. A role instance can inter-
act with its decorated object in two ways: It can intercept
method calls to the decorated object. This is called a callin.
Callins can be of type before, after, or replace. A role can call

Figure 7: Analysis sequence diagram for earn bonus

methods of the decorated object without specifying the ob-
ject. This is called a callout. These two kind of interactions
are also referred to as method bindings.

Teams are a structuring concept to encapsulate collaborat-
ing roles. Teams have class features. A base object can have
only one role instance per role class and per team instance.

A callin, i.e., a method call interception, can be compared to
an advice weave as found in Aspect-Oriented Programming
[9]. Roles and their enclosing teams thereby can be used to
encapsulate crosscutting behaviour.

ObjectTeams/Java provides fine-grained programmatic con-
trol over activation of teams which controls the behaviour
of its role instances with regard to callins. A team instance
can be either

• ACTIVE, meaning that callins are executed. A callin
will also implicitly create a role instance if it didn’t
exist yet.

• INACTIVE, meaning that no callin will be executed.

• FROZEN, meaning that only callins for existing roles
are executed. No roles are implicitly created.

Independent from the activation, a role can always be cre-
ated explicitly using team-level methods with a special base-
as-role signature containing the base class and the role class.

UFA-diagrams capture roles, teams, decoration of base classes,
and the method binding between roles and base classes (see
figure 8).

• Although teams share the standard behaviour of a
class, they are denoted as a �team� stereotype of
a UML package because they contain role classes.

• If the roles of a team decorate base classes, the base
classes have to be encapsulated by a package. The
team is said to adapt the base package which is denoted
by a stereotyped dependency �adapt� between the
two packages.

• A role is presented using a UML class with a few ex-
tensions. If the role is bound, the role name is followed
by = and the decorated base class name.

5



Figure 8: UFA diagram

• Method bindings are presented in a separate compart-
ment of roles. There are two kind of bindings. Call-
ins intercept base method calls and map them to role
methods denoted by a left-pointing arrow. Callouts are
role methods which are mapped to base class methods
denoted by a right-pointing arrow.

Our sequence diagram notation takes up the idea to inte-
grate aspects into the main flow of control such as in [2]
which depict that a method call is intercepted by drawing a
circle with a cross on a message arrow in the sequence dia-
gram. This circle is linked to an icon which stands for the
aspect entity.

We have adapted the part of the notation for the method
call interception (see figure 9) but omit the link to the as-
pect entity. Instead, our notation goes further by showing
the behaviour exhibited on behalf of the aspect rsp. its en-
tities [3]. Adapting this to ObjectTeams/Java means that
we show additional messages interchanged among roles and
teams. To this end we have introduced a new stereotype
�role� object, denoted graphically as a dice with a shadow
(see figure 9). Teams are depicted as a grey box enclosing
their role instances. Activation bars of role instances are
shaded in order to indicate that this control flow is executed
within a team.

Design Mapping
To achieve seamlessness it is desirable to keep the use case
modularity also in the design. As already pointed out, here
we deal with use cases which (i) have been identified as
crosscutting use cases, and (ii) which have been refined by
an object-oriented collaboration with complex structure and
behaviour.

A more detailed analysis of such collaborations results in
the following characteristics. Note, that not all of them will
always be true for each crosscutting use case refined by a
complex collaboration.

1. A crosscutting use case is refined by a collaboration
with a number of different objects and different rela-
tionships between them.

2. A crosscutting use case needs context information to
operate.

3. The relationship between objects of the collaboration
refining the crosscutting use case differs from the rela-
tionship of the same objects in the collaboration refin-
ing the base use case.

4. The objects from the collaboration refining the cross-
cutting use case are from a different domain than the
objects from the base use case but they share certain
attributes.

The first characteristic asserts that the use case has a reason-
able complex refinement by means of a collaboration. In a
design, it is desirable to encapsulate this collaboration. The
other three characteristics describes the interface of this col-
laboration to its context, more precisely to other objects. In
a design, it is desirable to provide control over this interface.

A team supports this kind of encapsulation while at the same
providing a controllable interface to part of its environment,
i.e., the base classes. Each of the above characteristics is
supported by concepts of a team and its roles.

1. Complex structure is supported by role attributes and
by associations between roles.

2. Role instances can obtain information about the dec-
orated objects using callouts.

3. Roles can have associations to roles without corre-
sponding associations on the base class level.

4. Roles and their base instances are conceptually the
same entity, thereby roles share the attributes of the
base.

Therefore we conclude that a team is an ideal candidate for
mapping a crosscutting use case. This becomes our main
design principle. Note, that in order to apply this principle
and to map a crosscutting use case to a team, not all of the
four above characteristics have to be fulfilled.

In the following we apply our main design principle to the
flight booking example. Note, that in the context of this
paper we only consider a design for a single-threaded envi-
ronment. ObjectTeams can however also be used in a multi-
threaded context.

The use case earn bonus is considered a candidate for a
team. In addition to being identified as crosscutting, it has
behaviour and a different view on the domain entities than,
for instance, the use case book flight.

From the analysis we know that the two entities passenger
and segment appear in two different collaborations. They
exhibit different behaviour in each analysis sequence dia-
gram. However, it is obvious that the passenger booking
a flight and the passenger earning the bonus share certain
properties such as their identity. Such an overlap in struc-
ture can be molded into roles decorating classes. The re-
sulting roles PassengerRole and SegmentRole are depicted
in figure 8. The controler object bonushandler becomes a

6



team. Its main task will be to take control over the in-
stantiation while controling the collaboration itself will be
implemented with callins as explained in the following.

From the use case diagram we know that the behaviour of
use case earn bonus is executed after step book segments in
the use case book flight. This is a hint to a callin which
has to be expressed in terms of the method calls from the
analysis sequence diagram.

It is fairly straight forward to determine the method call
book segments as the candidate for a callin because it is
the last method call involved in booking. The mode after
can also be kept. The behaviour to be inserted is described
in the analysis of use case earn bonus. The method get
bonus has to be executed as the callin on the role decorating
the segment The call earn flight bonus thereafter becomes
redundant. This is depicted in figure 9 with the the circle
with the cross and the branching of the call book segments.
Subsequently, the segment role has to determine the distance
by accessing its base class segments. Note, that the stars on
the method calls denote that these calls are executed many
times because the target is a multiobject.

After calculating the bonus the segment has to credit the
bonus to the passenger which is not known to a segment in
the analysis of use case book flight. However, it was assumed
to be known in the analysis of earn bonus. We can use a sec-
ond callin to make the passenger available as a role in the
context of the segment role so that the two can collaborate.
When the method book is called on a passenger we make a
callin to the passenger role method buy. This method stores
the passenger role as a reference inside the team bonushan-
dler so that subsequent calls can use it. Method buy is not
only a callin but replaces the original method book. How-
ever, it calls the original method inside buy similar to pro-
ceed in an around advice in AspectJ. Each replace callin to
buy will change the reference to the passenger role inside
the team. After this preparation, the segment role can call
credit on the passenger role. After the base method call, the
replace call in will set the reference to null at the end. The
circle with the dot denotes such a replace callin (see figure
9).

This approach requires that the corresponding team instance
is activated. In order to control that only bonus passen-
ger will have a role instance, the following steps have to
be taken: the team has to be FROZEN and bonus passen-
ger roles are created using a team level method public void
register(Passenger as PassengerRole){//empty}. The replace
callin sets the team activation to ACTIVE, calls the base
method, and after this, sets the team activation to FROZEN
again. During the team activation, the call to book on a
segment can trigger the after callin.

Note, that the role rsp. team behaviour is not only triggered
by a single method call from the base, but by two subsequent
calls. The team will only be active for a specific kind of
control flow happening in the base. This is not surprising
because we set out to map use cases with complex internal
behaviour to aspect-oriented programming. This may also
include the case that the control flow in a crosscutting use
case depends on the control flow of a base use case.

3: book

bookingUIstaff member bookhandler passenger flight segments

3.1: book flight 3.1.1: book

3.1.1.1: book 3.1.1.1.1*: book segments

bonushandler

A*: get bonus

passenger role segment role

A*.1: get dist.

A*.2: credit

buy

«role» before-callin

after-callin

replace-callin

base-call
decorated
object

Figure 9: Sequence diagram with roles

Figure 9 demonstrate the complete behaviour from the use
cases book flight and earn bonus. In the final UFA diagram
we also show the Java base classes (see figure 8) which are
refinements of the domain classes.

Having finished the UFA and sequence diagram we point
out once more that it is straight forward to derive an im-
plementation in ObjectTeams/Java from these models. An
example of the flightbooking implementation can be found
in [18].

4. RELATED WORK
Jacobson [8] argues that aspect-oriented programming pro-
vides the missing link in order to keep the use case modular-
ity in the design and implementation. He proposes to map
extension use cases to aspects while other use cases will still
be mapped to standard object-oriented components. An ex-
tension use case refers to extension points which have to be
inserted into the sequence of actions of the extended use
case. In contrast, the crosscut relationship does not require
to prepare the extended use case for the extension.

Recently, the first Model Driven Architecture (MDA) ap-
proaches have taken up ideas from AOSD. One specific ap-
proach called executable UML [14] proposes to strictly sepa-
rate concerns in so called domains and to specify automated
integration which makes extensively use of AOSD concepts
such as joinpoints, method call interception and weaving.
However, that approach only coarsely sketches ideas which
have not been instantiated yet. It is comparable to our goals
in that it envisions weaving for richly structured aspects.

In a similar respect, the process proposed with the language
AspectU (for use case level aspects) envisions partial gener-
ation of subsequent models from AspectU [15].

Theme/UML [4] provides a notation for parameterising pack-
ages over methods. Sequence diagrams contained in such a
package can make use of these parameters as triggers of se-
quences. These diagrams go one step further than our anal-

7



ysis sequence diagrams for crosscutting use cases because
they already show that these sequences will be triggered
by method calls and are different from other analysis se-
quence diagrams. When Theme/UML packages are bound
to other packages, the parameter methods can be bound to
actual methods meaning that the actual methods can be in-
tercepted. Here, our extended sequence diagram notation
goes one step further in specifying the integrated sequence.

Role-based modeling has a long tradition. We have molded
these ideas into the programming language ObjectTeam-
s/Java while combining them with concepts from Aspect-
Oriented Programming such as method call interception.

5. CONCLUSION AND OUTLOOK
We have described concepts for a process with which we can-
not only elicit but also consistently refine aspects with an
internal structure and complex behaviour. We have demon-
strated with an example how the transformation from a
standard object-oriented analysis to a design for Object-
Teams/Java can be guided by design principles. The trans-
formation of analysis collaborations into collaborations with
roles and classes results from applying these principles and
documents the design apart from the purely structural UFA
diagrams.

While the use case model by [16] provides an advantage over
standard use case modeling we feel that the relationships
between ordinary and crosscutting use cases are even more
manifold than what is currently captured. In the example
we gave, it turned out that more than one method call inter-
ception is needed to specify how the two collaborations from
the two different use cases are intertwined. Our main point
is that using isolated steps as single triggers fall short of
identifying dependencies between complex behaviour. Also
data dependencies should be dealt with.

In the future, we also plan to integrate view points into the
proposed process. We believe that this technique may be
another source for deriving richly structured aspects.

6. REFERENCES
[1] Proc. of First International Conference on Aspect

Oriented Software Development, Enschede,
Netherlands, 2002. ACM Press.

[2] M. Basch and A. Sanchez. Incorporating Aspects into
the UML. In Proc. Workshop on Aspect Oriented
Modeling at AOSD 2003, 2003.

[3] S. Binner. Erweiterung eines UML-Werkzeuges um
aspektorientierte Modellierung für Object Teams
(german). Master’s thesis, Technical University Berlin,
2004 (in preparation).

[4] S. Clarke and R. Walker. Towards a standard design
language for AOSD. In AOSD’02 [1], pages 113–119.

[5] Object Management Group. Unified Modeling
Language. http://www.omg.org.

[6] S. Herrmann. Composable designs with UFA. In
Workshop on Aspect-Oriented Modeling with UML at
First International Conference on Aspect Oriented
Software Development (AOSD), 2002.

[7] S. Herrmann. Object Teams: Improving modularity
for crosscutting collaborations. In M. Aksit,
M. Mezini, and R. Unland, editors, Proc. Net Object
Days 2002, volume 2591 of Lecture Notes in Computer
Science. Springer, 2002.

[8] I. Jacobson. Use Cases and Aspects - Working
seamlessly together. Journal of Object Technology,
2(4):7–28, 2003.

[9] G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and
J. Palm. An overview of AspectJ. In Proc. of 15th
ECOOP, number 2072 in LNCS, pages 327–353.
Springer–Verlag, 2001.

[10] P. Kruchten. The Rational Unified Process. Addison
Wesley, 2000.

[11] Object Teams home page.
http://www.ObjectTeams.org.

[12] A. Rashid, A. Moreira, and J. Araujo. Modularisation
and composition of aspectual requirements. In
AOSD’02 [1], pages 11–20.

[13] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo.
Early aspects: A model for aspect-oriented
requirements engineering. In Proc. IEEE Joint
International Conference on Requirements
Engineering, pages 199–202. IEEE Computer Society
Press, 2002.

[14] M. Balcer S. Mellor. Executable UML. Addison
Wesley, 2004.

[15] J. Sillito, C. Dutchyn, A. Eisenberg, and K. DeVolder.
Use case level pointcuts. In Proc. ECOOP 2004, Oslo,
Norway, June 2004.

[16] G. Sousa, S. Soares, P. Borba, and J. Castro.
Separation of crosscutting concerns from requirements
to design: Adapting the use case driven approach. In
Proc. Early Aspects Workshop at AOSD 2004, 2004.

[17] TOPPrax home page. http://www.topprax.de.

[18] M. Veit and S. Herrmann. Model-View-Controller and
Object Teams: A perfect match of paradigms. In Proc.
AOSD’03, Boston, USA, March 2003. ACM Press.

8


