
© 2008 by Stephan Herrmann; made available under the EPL v1.0 | March 20, 2008

The Object Teams Development Tooling:
A high fidelity extension of the JDT

Stephan Herrmann
Technische Universität Berlin

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.02

www.objectteams.org

ObjectTeams/Java
The Characters in this Play

Object

Teams

Development

Tooling

OT/Equinox
J
D
T

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.03

www.objectteams.org

OO is not the end of language development

• E.g., inheritance is great, but ...
A text book example:
 A man/woman is a person, OK
 An employee is a person, OK?

 Born as an employee?
 Dying when loosing the job?
 Several jobs, yet only one salary?

• Whats wrong with inheritance?
 Missing “become”, “quit” 
 Can't duplicate fields 
 Employee & Person = 1 instance 

• Can we do better?
 Yes:
 Employee is a Role played by a Person

ObjectTeams/Java

Person
name

WomanMan

Employee
salary

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.04

www.objectteams.org

p l a y e d B y relationship

• Advantages:
 Dynamism:

roles can come and go
(same base object)

 Multiplicities:
one base can play several roles
(different/same role types)

• Is this completely new?
 No, has been around >15 years
 pl ayedBy is similar to ext ends
 how similar?

Person
name

Employee
salary

«playedBy»

Role Base

joe: Person
name=”joe”

:Student
matr=0815

«playedBy»

:Employee
salary=100

«playedBy»

:Employee
salary=2000

«p
lay

ed
By

»

ObjectTeams/Java

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.05

www.objectteams.org

Comparing at a closer look

• Inheritance
 Import / acquisition

 dispatch sub → super
 Overriding

 dispatch super → sub
 Subtype polymorphism

 substitutability

• Role Playing

ObjectTeams/Java

??

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.06

www.objectteams.org

Import in OT/J:

• A callout method binding ...

... declares that calls to the role should be forwarded to its base
 ... can use different names on role / base sides
 ... can adjust signatures

 implicitly: discard unused values
 explicitly: parameter mappings

:Person
name
getName()

:Employee
salary
getName → getName

«playedBy»

ObjectTeams/Java

S t r i n g g e t N a me () - > S t r i n g g e t N a me ();

1. getName() 1.1 getName()

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.07

www.objectteams.org

Overriding in OT/J:

• A callin method binding ...

... declares that calls to the base should be intercepted by its role
 ... can use different names on role / base sides
 ... can adjust signatures

 implicitly: discard unused values
 explicitly: parameter mappings

 ... comes in one of three flavors: bef or e, r epl ace or af t er

:Person
phoneNo
getPhoneNo()

:Employee
officePhoneNo
getPhoneNo ← getPhoneNo

«playedBy»

ObjectTeams/Java

S t r i n g g e t P h o n e N o () <- r epl ace S t r i n g g e t P h o n e N o ();

1. getPhoneNo()1.2 getPhoneNo()

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.08

www.objectteams.org

“... when (s)he is in the office ...”

• How do you know?
• Roles depend on context
• In OT/J contexts are reified as Teams

 roles are inner classes of a team class
 role instances are inner instances of a team instance

• Each team instance can be (de)activated
 (several mechanisms: globally, per thread, implicitly, temporarily ...)

ObjectTeams/Java

:Person
phoneNo
getPhoneNo()

 c :Company
name
hire(Person p)

:Employee
officePhoneNo
getPhoneNo ← getPhoneNo

«playedBy»

1. getPhoneNo()1.2 getPhoneNo()

Off On

if (c.isActive())

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.0

www.objectteams.org

ObjectTeams/Java

Substitutability?

• Are the following assignments legal?

Normally not, but...
• Idea: roles live (usually) only within the team
• When a role object leaves the team

 it is lowered to its base
• When a base object enters a team

 it can be lifted to a role

E mp l o y e e e mp = . . .

P e r s o n p e r s o n = . . .

p e r s o n = e mp ; / / l e g a l ?

e mp = p e r s o n ; / / l e g a l ?

1.
2.

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.010

www.objectteams.org

Comparison

• Inheritance
 Import / acquisition

 dispatch sub → super
 Overriding

 dispatch super → sub
 Subtype polymorphism

 substitutability
 pass an instance of sub class

where the super class is expected

• Role Playing
 Import / acquisition

 dispatch role → base
 Overriding

 dispatch base → role
 Translation polymorphism

 lowering role → base
 lifting base → role
 two-way substitutability!

ObjectTeams/Java

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.011

www.objectteams.org

Summary ObjectTeams/Java

• Role playing combines the powers of inheritance with
 Dynamism:

roles can come and go (same base object)
 Multiplicities:

one base can play several roles (different/same role types)
• Teams

 encapsulate a set of interacting roles
 team activation controls the effect of all contained callin bindings
 create larger structures (stacking / nesting / layering)

ObjectTeams/Java

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.012

www.objectteams.org

Tooling for ObjectTeams/Java

• Goal: “A high-fidelity extension of the JDT”
 The same quality (code & user experience)
 Unrestricted Java-development
 Seamless support for specifics of OT/J

• Need to cover (minimum):
 Compiler  Editor  Wizards
 Run/Debug  Code Assist  Structure Viewers
 Help  Refactoring  Search / Call Hierarchy
 Integration with PDE

• Goal: “A high-fidelity extension of the JDT”
 Maximum reuse
 Maintainable
 Evolvable

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.013

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run as Object Teams Application

 configuration instantiate & activate a Team
• Wizard: created role with playedBy
• Editor seamlessly highlight etc.
• Compiling seamlessly: incremental, eager ...
• Code assist create OT/J elements

apply std. assists to OT/J
• Help! link problems to language definition

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.014

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

Seamless integration
 Object Teams Runtime Environment
 Run as Object Teams Application

Additional configuration
 Team Activation

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.015

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

Project creation
 Object Teams Project
 Object Teams Plugin Project

Class creation
 Team
 Role playedBy Base

inline
role file

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.016

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

Syntax highlighting
 includes other views like Compare

Semantic highlighting
Navigation

 F3 everywhere!
 Ctrl-O Ctrl-O
 Callin markers
 etc.

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.017

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

Full Java 5 support
Incremental compilation
Eager & partial compilation

 sophisticated error recovery (content assist)

Speed
.java → .class
Scoped keywords:

 plain identifiers when used outside team

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.018

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

Completion
 OT/J keywords
 create/complete method bindings

(callout/callin)
 support std. completions in OT/J code, too.

(work in progress)

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.019

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

Quick Fix
 modifier problems

 class, method, method binding
 learn about special OT/J features
 type errors
 coding style
 adapt JDT quick fixes

to handle OT/J elements/rules, too:
 suppress warnings, create method,

 organize imports

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.020

www.objectteams.org

Working with the OTDT

<DEMO 1> Summary:
• Run

 configuration
• Wizard:
• Editor
• Compiling
• Code assist

• Help!

 New language – new error messages
 “What did I do wrong??”
 Let us tell you.
 Go to Language Definition

precise links
comprehensive
single source: XML → {PDF, XHTML (x2)}

 Tutorial
 Code Samples
 Developers' Guide

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.021

www.objectteams.org

Debug

<DEMO 2> Summary:
• Stepping showing the right code
• Debug View tell the user what's happening
• Team Activation show and manipulate program mode

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.022

www.objectteams.org

Debug

<DEMO 2> Summary:
• Stepping
• Debug View
• Team Activation

Object Teams Development Tooling

 Source mapping
 uses JSR 45 / SMAP

 Filter runtime library code

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.023

www.objectteams.org

Debug

<DEMO 2> Summary:
• Stepping
• Debug View
• Team Activation

Object Teams Development Tooling

 Beautify special stack frames
 revert generated names
 use custom syntax & coloring

dispatch code
{{Dispatch method foo}}

 lifting invocations
{{Lifting to MyRole}}

executing declarative bindings
[foo <- bar]

base calls: almost normal method calls
base.foo()

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.024

www.objectteams.org

Debug

<DEMO 2> Summary:
• Stepping
• Debug View
• Team Activation

Object Teams Development Tooling

 Team Monitor View
 derived from Variables view
 all known team instances:

active
implicitly active
inactive

interactively change activation
 switch program modes

Correspondence:
runtime stack traces ↔ static call hierarchies

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.025

www.objectteams.org

Search

• Core
 find references within

OT/J constructs
• UI

 display found OT/J elements
 hide generated elements
 beautify mangled names

Object Teams Development Tooling

Call Hierarchy

• OT/J specific control flows
 method invocations due to

callout/callin method bindings
• While we're at it ...

 control flows resulting in
assignment to a given field
(see https://bugs.eclipse.org/75800)

https://bugs.eclipse.org/75800

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.026

www.objectteams.org

Structure Viewers

• Package explorer
• Type Hierarchy

Object Teams Development Tooling

+
+

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.027

www.objectteams.org

Structure Viewers

• Package explorer
 overlays for packages (package = team, containing role files)
 switch physical/logical presentation of role files ()

• Type Hierarchy

Object Teams Development Tooling

−

+

team = class
team = package
role = separate compilation unit
role = inner class

role itself is a team, containing nested roles

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.028

www.objectteams.org

Structure Viewers

• Package explorer
• Type Hierarchy

Object Teams Development Tooling

+
+

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.029

www.objectteams.org

Structure Viewers

• Package explorer
• Type Hierarchy

 Team inheritance induces new structure
 role classes can be overridden (virtual classes)
 overriding role implicitly inherits from previous version
 a role may have multiple supers

Object Teams Development Tooling

B EB

B EB

−
+

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.030

www.objectteams.org

Binding Editor

• Genuinely new view
• Idea: table based editing

of these bindings:
 p l a y e d B y role class → base class
 callout role method → base method
 callin role method ← base method(s)

• Implemented
 as a dialog
 using AST rewriting

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.031

www.objectteams.org

Refactoring

• Ensure soundness of existing refactorings
 Java refactorings must not break OT/J code
 done for some fundamental refactorings

 implementation was based on JDT 3.0
 currently only partly supported
 migration is work in progress

• New refactorings
 want to create OT/J structures by refactoring
 current stage: planning

Object Teams Development Tooling

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.032

www.objectteams.org

Facing real problems

• OTDT should be similar to JDT, just different
Difference is

 not anticipated by JDT developers
 nor likely to be supported by future version of the JDT

 too many hooks needed,
 scenarios are too specific

• “I need this hook now.”
 Copy & paste? Other ways of hacking the base?

• “My adaptation must be maintainable.” – “clean”
 one module per feature (and vice versa)
 well-defined / narrow interface to existing plugins.

• That's what OT/J has been developed for!
• Our “trick”:

 Plugins written in ObjectTeams/Java

Under the hood

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.033

www.objectteams.org

Plugin-based Architecture

OT/Equinox

Plug-in A

CA1 CA2

Plug-in B
export

internal

CB1

IB2

CB4
CB3

CA2

Plug-in C
CC1Team1

R1

R2
«playedBy»

 «playedBy»

IB2

API dependencies extension

aspect binding

• Modules
• Relations

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.034

www.objectteams.org

Declaring Aspect Bindings

Extendsion point org.objectteams.otequinox.aspectBindings
 basePlugin
 team

• Limited privileges
• Deployment

 Instantiation
 Activation

OT/Equinox

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.035

www.objectteams.org

E.g., adapting “About Bundles”
public team class BrandingAdaptor {
 protected class AboutBundleAdaptor playedBy AboutBundleData
 {
 callin String getVersion() {
 String adaptationString = ""; //$NON-NLS-1$
 String pluginID = getID();
 if (TransformerPlugin.getDefault().isAdaptedBasePlugin(pluginID)) {
 HashSet<String> reportedPlugins = new HashSet<String>();
 adaptationString = BrandingMessages.BrandingAdaptor_OT_adapted_by;
 for (String element :

 TransformerPlugin.getDefault().getAdaptingAspectPlugins(pluginID))
 {
 if (!reportedPlugins.contains(element))
 adaptationString = adaptationString+"\n* "+element; //$NON-NLS-1$
 reportedPlugins.add(element);
 }
 }
 return base.getVersion() + adaptationString;
 }
 String getID() -> String getId();
 getVersion <- replace getVersion;
 }
}

OT/Equinox

Overriding 1 single method

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.036

www.objectteams.org

Typical adaptation: extend switch-case
protected class SuppressWarningsAdaptor playedBy SuppressWarningsSubProcessor {
 static callin void addSuppressWarningsProposal(ICompilationUnit cu, ASTNode node,
 String warningToken, int relevance, Collection<ASTRewriteCorrectionProposal> proposals)
 {
 // adding one case block to the front of the original method:
 ChildListPropertyDescriptor property= null;
 String name;
 Object baseElement;
 switch (node.getNodeType()) {
 case ASTNode.CALLIN_MAPPING_DECLARATION:
 property= CallinMappingDeclaration.MODIFIERS2_PROPERTY;
 baseElement= // otj specific code here
 name= // otj specific code here
 break;
 // other similar cases omitted
 default:
 // other cases are already handled by the original method.
 base.addSuppressWarningsProposal(cu, node, warningToken, relevance, proposals);
 return;
 }
 String label= // otj specific code here
 ASTRewriteCorrectionProposal proposal= // otj specific code here
 proposals.add(proposal);
 }
 addSuppressWarningsProposal <- replace addSuppressWarningsProposal;
}

OT/Equinox

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.037

www.objectteams.org

Advanced OT-Plugin

OT/Equinox

• One team encapsulates many individual adaptations.
• Adapting several plugins involves several teams.

 The Object Teams Development Tooling | A high fidelity extension of the JDT | © 2008 by Stephan Herrmann; made available under the EPL v1.038

www.objectteams.org

ObjectTeams/Java

The way we've come

Object
Teams
Development
Tooling

OT/Equinox
J
D
T

• ObjectTeams/Java
• started in late 2001

• OTDT
• started in 2003
• 1.0.0 release with Callisto

• OTDT on OT/Equinox
• since mid 2006
• current version is 1.1.8

• OT/Equinox for non-IDE use

see you on http://www.objectteams.org/

Trailer

http://www.objectteams.org/

