

ECOOP 2009 Summer School

Object Teams: Programming with Contextual Roles

Dr. Stephan Herrmann Independent

www.objectteams.org

A Conservative Revolution

Object Teams ...

- shows respect for O-O principles
 - all new concepts must smoothly fit into O-O
- takes O-O to the extreme
 - fully elaborate the powers of
 - objects, inheritance, composition ...
- adds one new dimension
 - objectivity
 - an object is an object is an object
 - subjectivity
 - selective views with specific purposes

Adding Roles to O-O

Roles are a seamless extension of O-O

- classes & objects & roles ?
 - these are boring!
- what's happening between these things?
 - association
 - composition / containment (stricter semantics)
 - inheritance
 - delegation (more flexible)
 - nested inheritance (larger scale)
 - ***** interactions

 - contextual dispatch

Relationships

Object Teams introduces two relationships

- object containment
 - instances nested within instances
 - supports interaction among siblings
- playedBy relationship
 - inheritance-like delegation
 - supports interaction among parts of an object
- Application of inheritance to the above
 - inheritance of composed structures
 - virtual classes & family polymorphism
- Application of playedBy to inheritance structures
 - mapping between different structures
 - smart lifting & translation polymorphism

Coherence

These concepts are connected by Roles

Coherence

Concepts are connected by Roles

The two faces of a Role

- member of a context
 - interact with each other
- view of an underlying base
 - interact with base / two parts of "self"

Powerful Pivot

Roles

- connect intuition to technology
- emphasize objects over classes
- introduce subjectivity in
- are broadly explored
- The role metaphor
 - transcends its origin
- Roles entail
 - the concept of Contexts
- Designing with roles
 - adds one more dimension of separation of concerns

ICSE 2009:

"Most influential paper" from ICSE 1999:

"N Degrees of Separation: Multi-Dimensional Separation of Concerns"

Definitions of Roles

Sowa [1984]

- natural types
 - "relate to the essence of the entities"
- role types
 - "depend on an accidental relationship to some other entity"

Guarino [1992]

- natural type
 - rigid, lacks foundation
 - being a Person doesn't change over time,
 - does not depend on relationships

role

- founded, lacks semantic rigidity
 - being a Student depends on an enrollment relationship
 - can change over time without loss of identity

Taxonomy of "is"

- is = instance-of
 - Eric Jul is_a Man
 - set membership:

instance x type

- is = subtype
 - A Man is a Person
 - » set inclusion:

type x type

- is = role-of
 - Eric Jul is_the President (of AITO)
 - role attachment:

instance x instance

- is = generalized playedBy
 - A President is a Person
 - promise of role attachment: type x type

Properties of Roles (1/5)

- 15 Criteria by Friedrich Steimann
 - and their mapping to Object Teams
- First approximization of ObjectTeams/Java
 - Java + Delegation
 - role containment : inner classes (instance containment)
 - playedBy : delegation (overriding, late binding of self)

Properties of Roles (1/5)

15 Criteria by Friedrich Steimann

- and their mapping to Object Teams
- Roles depend on relationships
 - roles depend on context (relationship, collaboration, ...)
- A role comes with its own properties and behavior
 - ✓ roles are types
- The state of an object can be role-specific
 - ✓ roles have state, contribute to state of compound object
- Features of an object can be role-specific
 - ✓ roles can override base features
- An object may acquire and abandon roles dynamically
 - ✓ role playing is a dynamic relationship between objects

Reconsider O-O Basics: Association vs. Containment

Options & Choices

Restricting Access

- Encoding architectural constraints
 - access restricted to authorized clients

- CoffeeMachine<@Department.this>
- CoffeeMachine<@yourDepartment>

JK

illegal

Stricter Alias Control

Ownership could leak through polymorphism

- every (dependent) type <: Object?</pre>
 - new top-level types: Confined, IConfined
 - protected sub-classes of Confined cannot leak
 - restricted inheritance: reuse, yet preserve "anonymity"

Ownership may be too strict

- compromises
 - accessible by empty interface | Confined:
 - opaque, featureless roles
 - grant readonly access
 - expose readonly interface, keep class inaccessible

Not yet:

- formalization, proofs
- implementation for restricted inheritance, readonly

Richer Semantics

- Just one kind of associations is too weak
 - cannot create large structures
 - cannot reason about structure
- } Objects!

- Role containment
 - adds strict composition / ownership
 - adds intermediate variants
 - connects ownership to the role/context metaphor
- Make this the foundation for other concepts

Language Design Principle (1)

Restrictions first

- basic structures must dominate
 - e.g., roles are allways immutably attached to a base

Flexibility first

- concepts have to support many designs
 - e.g., dynamically attach/detach roles to a base

Exceptions second

- exceptions to restrictions
 - → e.g., some roles may be re-attached
- exceptions to flexibility
 - e.g., optimize unused flexibility

Language Design Principle (2)

Respect your host

- ObjectTeams/Java behaves to the rules of Java
 - some rules hurt
 - yet, breaking customs hurts more
- Secondary concepts to consider:
 - modifiers: static, private, ...
 - constructors
 - overloading
 - threads
 - exceptions
 - generics

Reconsider O-O Basics: Generalization

Generalizing Inheritance

Generalization = "is_a"

- Classification with super sets / sub sets
- Supports abstraction

 - elements of sub set share properties of super
- Supports specialization

 - sub set defines more properties (exceptions?)

Inheritance realizes generalization

- Classification, abstraction, specialization ...
- Inheritance is rigid
 - classification determined at birth once and for ever

Non-rigid generalization?

Summary

- Generalization = "is_a"
 - → generalizes over ...
- Inheritance
 - rigid
 - single type
 - determined at birth
 - focus on classes
- Role Playing
 - anti-rigid
 - multiple specialization
 - dynamic
 - focus on objects

Comparing Inheritance vs. Role Playing

Design Choices

Generalization ≠ Inheritance

A naive (textbook?) example

- A man/woman is a person, OK
- An employee is a person, OK?
 - Born as an employee?
 - Dying when loosing the job?
 - Several jobs, yet only one salary?
 - What gender do employees have?

Person name Woman Employee salary

Whats wrong with inheritance?

Missing "become", "quit"

Can't duplicate fields

- Only one most-specific type/object

• Missing support for

- changes over time
- flexible combinations & multiplicities

Properties of Role-Playing

playedBy Relationship

Advantages:

- Dynamism: roles can come and go (same base object)
- Multiplicities:
 one base can play several roles
 (different/same role types)
- Similarity to inheritance
 - playedBy declares delegation

Detailed Comparison

Inheritance

- Import
 - → dispatch sub → super
- Overriding
 - → dispatch super → sub
- Substitutability
 - pass an instance of sub class where the super class is expected

Role Playing

Inheritance

Role Playing

- Import
 - **▶** dispatch sub → super

Inheritance

- Import
 - dispatch sub

Role Playing

- Callout binding
 - **▶ dispatch role** → base

No other access to «base»

- encapsulate semantics
- separate two worlds
- specific privilege

on

nce-of»

on

String getName() -> String getName();

getNag

- different names
- parameter mappings (implicit/explicit)
- decapsulation

Inheritance

- ▶ Import
 - ightharpoonup dispatch sub ightharpoonup super
- Overriding

Role Playing

- Callout binding

Inheritance

- Import
- Overriding
 - dispatch su

Role Playing

- Callout binding
- Callin binding

String getPhoneNo() <- replace String getPhoneNo();</pre>

- §§
- different names
- parameter mappings (implicit/explicit)
- before / replace / after
- base calls

Inheritance

- Import
- Overriding
 - dispatch su

Role Playing

- Callout binding
- Callin binding

Detailed Comparison

Inheritance

- Import
 - → dispatch sub → super
- Overriding
 - → dispatch super → sub
- Substitutability
 - pass an instance of sub class where the super class is expected

Role Playing

Inheritance (1): Import

Sub-class imports from super-class

- all members
 - except private
- accessibility / scoping
 - extends the scope of the sub-class
- renaming?
 - only in few languages
- interpretation
 - → forwarding sub → super (classes)

Role-Playing (1): Import

- Role-object imports from base-object
 - only by declared callout binding
 - inference as an option
 - accessibility / Supporting Evolution
 - * extends the scorring role-object
 - renaming
 - as part of callout binding (incl. parameter mapping)
 - interpretation
 - forwarding role → base (objects)

Import in OT/J:

A callout method binding

String getName() -> String getName();

- ··· ... can use
- ... can adjι

 - explicitI
- A callout to

String getN2

No other access to «base»

- encapsulate semantics
- separate two worlds
- specific privilege

Inferred callout

- ▶ for self calls
- for methods declared in a common interface

Inheritance (2): Overriding

Sub-class overrides super-class behavior

- by name equality
 - except private, final
- renaming?
 - only in few languages
- interpretation
 - interception super → sub

BUT

who selects among multiple sub-classes?

Inheritance (2): Overriding

- Sub-class overrides super-class behavior
 - by name equality
 - except private, final
 - renaming?
 - only in few languages
 - interpretation
 - interception super → sub

- Dynamic context selects behavior
 - the dynamic type of the current object

Role-Playing (2): Overriding

- Role-object override hase methods
 - only by declare Supporting Evolution
 - ~ < no exception>
 - renaming
 - as part of callin binding (incl. parameter mapping)
 - interpretation
 - interception role ← base (objects)

Role-Playing (2): Overriding

- monly by declared callin binding
 - " <no exception>
- renaming
 - * as part of callin binding (incl. parameter mapping)
- interpretation
- BUTinterception role ← base (objects)
 - who selects among multiple base objects??

Role-Playing (2): Overriding

- Role-object override base methods
 - only by declared callin binding
 - * <no exception>
 - renaming
 - as part of callin binding (incl. parameter mapping)
 - interpretation
 - interception role ← base (objects)
- Dynamic context selects behavior
 - role objects live in a team object

Teams as Context

- Roles depend on context
- In OT/J contexts are reified as Teams

 - role instances are inner instances of a team instance
- Each team instance can be (de)activated
 - active team instances contribute to the system state
 - dispatch considers system state
 - several mechanisms: globally, per thread, implicitly, temporarily

Teams as Activation Context

- Roles depend on context
- In OT/J contexts are reified as Teams
 - roles are inner classes of a team class
 - role instances are inner instances of a team instance
- Each team instance can be (de)activated
 - active team instances contribute to the system state
 - dispatch considers system state

```
square of the s
```


Overriding in OT/J

A callin method binding ...

```
String getPhoneNo() <- replace String getPhoneNo();</pre>
```

- ... declares that calls to the base should be intercepted by its role
 - ... can use different names on role / base sides
 - ... can adjust signatures
 - implicitly / explicitly
 - ... can have a guard predicate: when (expr)
 - Event / Condition / Action
- Binding variants
 - before, replace or after

Buy 2 – Get 1 for Free

2 Mechanisms, 3 styles of dispatch

Forwarding

▶ Interception

- Delegation w/ Overriding
 - = Forwarding
 - + Interception

Inheritance vs. PlayedBy in OT/J (2/3)

Detailed Comparison

Inheritance

Role Playing

▶ Import	
dispatch sub → super	
	Callin binding
Substitutability	
pass an instance of sub class where the super class is expected	

Substitutability

Are the following assignments legal?

```
Employee emp= ...
Person person= ...
1. person= emp;  // legal?
2. emp= person;  // legal?
```

Normally not, but...

roles (usually) live within the team only

- When a role object leaves the team
 it is lowered to its base
- When a base object enters a team
 - it can be **lifted** to a role

Substitutability by translation → Translation Polymorphism

Role Multiplicities

- Translation base → role: Lifting
 - A base can have many roles,
 - but only one per context: Team

- lift(b1, t1) → r1
- lift(b2, t2, RoleA) → r4
 RoleA<@t2>

lift(b1, t2)
$$\rightarrow$$
 r3

lift(b2, t2, RoleB) → r5

Role Life Cycle

- Roles are created ...
 - on demand if lifting finds no existing instance
 - or, explicitly using new
- Role have state
 - state is persistent across invocations / liftings
- Garbage Collector "knows"
- Team maintains ...
 - mapping base → role
 - provides reflective functions (seldomly needed):

```
hasRole(aBase)

petRole(aBase, aRoleClass)

unregisterRole(aRole)

...
```


Lifting - Where&When?

- All data flows entering the team
 - the callin call target
 ✓

```
team class CGraph {
    class ColoredEdge playedBy Edge {
        setStartNode(ColoredNode n) ← after setStartNode(Node n);
        ColoredNode getStartNode() → Node getStartNode();
    }
    setRootNode(Node as ColoredNode root)

a callout result

declared lifting (team method)
```


Translation Polymorphism

- Two-way substitutability
 - support data flows in both directions
 - no ClassCastException
 - if desired: LiftingVetoException
- Hidden at source level
 - no explicit conversions
 - if needed: ILowerable.lower()
- no manual ma
 Pending: Optimizations
 Eat the cake at (compiler / runtime)
- - no disadvantage of "object schizophrenia"
 - instances are "almost the same"

Inheritance vs. PlayedBy in OT/J

Detailed Comparison

Inheritance

Role Playing

	Callout binding
	base dispatch role → base
	Callin binding
	base dispatch role ← base
Substitutability ■	
pass an instance of sub class where the super class is expected	lowering role → base
	lifting role ← base
	two-way substitutability

Roles & Teams

- Role playing: the powers of inheritance plus ...
 - Dynamism
 - roles can come and go (same base object)
 - Multiplicities
 - one base can play several roles (different/same role types)

Teams

- team activation
 - controls the effect of all contained callin bindings
- encapsulate a collaboration
 - set of interacting roles

Properties of Roles (2/4)

15 Criteria by Friedrich Steimann

- and their mapping to Object Teams
- An object may play different roles simultaneously
 - ✓ roles are instances, base is agnostic of its roles
- An object may play the same role several times, simult.
 - ✓ differentiate by several containing team instances
- An object and its roles have different identities
 - ✓ roles are distinguishable instances
- An object and its roles share identity
 - translation polymorhpism hides difference, use roleEQ() for relaxed comparison

Properties of Roles (3/4)

15 Criteria by Friedrich Steimann

- and their mapping to Object Teams
- Roles restrict access
 - accessibility only via callout
- Different roles may share structure and behavior
 - ✓ inheritance among roles, or: delegation to base
- Objects of unrelated types can play the same role
 - ✓ role type as an a-posteriori super-type

And now for a Message from our Sponsor ...

Fact Sheet

ObjectTeams/Java (OT/J)

since 2001

- Java += roles, teams, bindings
- → OTJLD 1.0 (current 1.2)

July 2007

Object Teams Development Tooling

since 2003

- Java Compiler += OT/J constructs
- → JDT for OT/J (code assist, ui, launch ...)

Other

OT/Equinox: Equinox += aspect bindings

since 2006

- Application
 - Case studies (project TOPPrax)
 - Class room
 - **™** OTDT
 - UML2 tools (base on EMF/GEF/GMF)

2009

Incremental vs. Full Adoption

Adaptation

- Given an existing application
 - could be 3rd party
- Any change task can be implemented as a team
 - new feature
 - changing an existing feature
 - even bug fixes (if you like)

Initial design

- Fully develop using Object Teams
- Leverage additional dimension of separation

Applying Inheritance to Containment:

Team Inheritance

- Inheritance = Import, Override, Substitutability
- Attributes, Methods, Role Classes
- Propagating Specialization

Consistent Polymorphism

- Virtual classes
 - Type safe covariance with dependent types
 - Family Polymorphism™
- Exception: role migration (to other team)

Consistent Polymorphism

- Consistently specialize a set of role classes
- No danger of mixing roles from different teams
- Scalable Template&Hook

Consistent Polymorphism

- Q: which type "Move" is used?
- A: the one valid in the current context
 - Chess.Rule → Chess.Move, TicTacToe.Rule → TicTacToe.Rule
- Q: what if I don't have a context?
 - I hold a reference to a Rule, not knowing what game
- A: you have to know what game instance!

```
final BoardGame myGame = ...
Rule<@myGame> rule = myGame.getSomeRule();
Move<@myGame> move = myGame.getRandomMove();
rule.validate(move);
```


Consistent Polymorphism

A: you have to know what game – instance!

```
final BoardGame myGame = ...
Rule<@myGame> rule = myGame.getSomeRule();
Move<@myGame> move = myGame.getRandomMove();
rule.validate(move);
```

- Q: haven't I lost polymorphism, now?
- A: no, myGame is still polymorphic
 - type Move is dynamically bound relative to myGame.
 - and everything is rock solidly type-safe

Class level Template&Hook

```
abstract team class BoardGame
    abstract class Player {...}
    Player a;
    void init() {
        a = this.new Player();
team class Chess extends BoardGame
   class Player {...}
```

```
abstract class C
    abstract void hook();
    void template() {
        this.hook();
class D extends C
  void hook() {...}
```

Team BoardGame is a template: incomplete implementation Role Player is a hook: opening filled in team Chess

Roles are virtual classes

- can be overridden in sub-teams
- overiding role implicitly inherits from overridden role
- mild form of multiple inheritance

→ two kinds of super-call:

```
** super(); (constructor) - super.m(); (method)
** tsuper(); (constructor) - tsuper.m(); (method)
```


Applying Translation Polymorphism to Inheritance Structures

"Smart Lifting"

Most Specific Type

Attempt #1

- Connect roots of inheritance trees
- Let lifting always choose the most specific type

It works

- always use R1 for any base ≤: B0
- cannot handle multiple subtypes of R0

Lifting with Constraints

- Individual playedBy declarations
 - constrains lifting to bases of more specific types
 - covariant redefinition of «base»
- Mapping of inheritance structures
 - № 1:1

Lifting with Constraints

Individual playedBy declarations

- constrains lifting to bases of more specific types
- covariant redefinition of «base»

Mapping of inheritance structures

- ₩ 1:1
- ignore sub-base B3
- insert R1 (never instantiated)
- skip B1 (subsumed by R0)

Double Dispatch

Adding instance dispatch to method dispatch

Double Dispatch

Adding instance dispatch to method dispatch

Applying Generics to Role Playing

Generic Callin Bindings

Problem:

replace callin binding requires 2-way compatibility

```
callin T1 roleMethod() {
    T1 oldResult = base.roleMethod();
    return new T1();
}
T1 roleMethod() <- replace T1 baseMethod();</pre>
```

- Java 5 introduces covariant returns
 - binding to T2 baseMethod() fails → ClassCastException
- OT/J enforces the use of generics where needed
 - explicitly capture covariant methods
 - use type bound

```
callin <E extends T1> E roleMethod() {
    return base.roleMethod(); // OK, new T1() NOK
}
<E extends T1> E roleMethod() <- replace T1+ baseMethod();</pre>
```


Base Class Generalization

Recall this structure

Base Class Generalization

But,

how can this method be typed?

```
TeamComponent

CommonSuperRole

SpecificRole1

SpecificBase1

SpecificBase2
```

```
void invokeOnRole(? as CommonSuperRole anyObj) {
    anyObj.commonBehavior();
}
```

- want to allow SpecificBase1 and SpecificBase2
- answer:
 - new kind of type bound:

```
<B base CommonSuperRole>
void invokeOnRole(B as CommonSuperRole anyObj) {
        anyObj.commonBehavior();
}
```

B is the union of all classes that can be lifted to CommonSuperRole

Composed Structures

Applying Object Teams Concepts to each other

Nesting – Stacking – Layering

Team plays the role **Role**

Nesting

- Team can contain teams as its roles
- Nesting applies to instances, too

Stacking

- Role can adapt another team
- Multiple roles coordinate multiple teams

Layering

Role plays the role Base

- Roles adapt roles of another team
- Define a view of an existing team

Layering – Detail

```
public team class ColoredGraph
                                          public team class Graph
                                               public class Node {
    protected class CNode
             playedBy Node<@ >
Missing anchor (team instance) for role type graph. Graph. Node outside its team context (OTJLD 1.2.2(b))
    protected class CEdge
                                               public class Edge {
             playedBy Edge
                                                      Node getStartNode()..
        abstract CNode getStart();
        getStart -> getStartNode;
```


Layering – Detail

```
public team class ColoredGraph
  final Graph graph = ...;
   protected class CNode
           playedBy Node<@graph>
   { ... }
   protected class CEdge
           playedBy Edge<@graph>
      abstract CNode getStart();
      getStart -> getStartNode;
```

```
public team class Graph
    public class Node {
    public class Edge {
           Node getStartNode()..
```


Properties of Roles (4/4)

15 Criteria by Friedrich Steimann

- and their mapping to Object Teams
- Roles can play roles
 - use team layering
- The sequence in which roles may be acquired and relinquished can be subject to restrictions
 - ✓ role-of-role, guard predicates, role constructor throwing
- A role can be transferred from one object to another
 - ✓ use IBaseMigratable

A Meta Model for Object Teams

Meta Model for OT/J?

Combinations?

Role & Team: nested Team

Role & Base: layered Team, Role-of-Role

Team & Base: stacked Teams

Model evolution?

group of classes → collaboration of roles

Meta Model for OT/J!

In order to explain Roles you first have to explain Roles.

Big Picture

Architecture with Object Teams

Classes – Packages - Components

Traditional decomposition

New feature requested

- identify affected classes
- no way to define new feature as a module

Be Inventive!

We need to zoom out!

- See a new solution?
- No.
- Try again!

Entering The Next Level

- Can you see it now?
- Now?
- Now!

Layered Design

In truely layered designs

- each layer may have its very own structure
- layers are connected to each other by a mapping
- mapping
 - can be 1:n
 - exposes/hides elements from other layer

Layers with Object Teams

Mapping

- playedBy
- callin / callout

to connect classes / objects

to connect methods / fields

Modules

- Role defines view on base class
- Team encapsulates a set of roles

Summary Conclusion Epilogue

Summary

Summary

Objectivity ↔ Subjectivity

Objectivity

- Objects are exhaustively defined in one place
- Definition must consider all special cases
- Subjectivity
 - Consider only relevant properties

 - Object Teams makes Roles Real

Express new year perspective relates to "the world

- Subjectivity in Software Engineering
 - Perspectives during RE
 - Views / diagrams during design
 - In programming: Roles!

Epilogue

- In the end also "Role" is just a word
- We may try to define this word
 - as referring to something out there
- Or we may find it useful
 - when used together with other words like "Context"
 - in order to create a new game of words

Mechanisms in more Detail

Components: OT/Equinox

Patterns

Connector Pattern

Virtual Restructuring

Define this view

```
team class PrintFlight {
    class FlightRole playedBy Flight {
        int getSegmentCount() → get List<Segment> segments
            with { result ← segments.size() }
        SegmentRole segmentAt(int i) → get List<Segment> segments
            with { result ← segments.elementAt(i) }
}

** base class PrintFlight {
        class FlightRole playedBy Flight {
            int getSegment> segments
            with { result ← segments.elementAt(i) }

** pet List<Segment> segments
            result ← segments.elementAt(i) }

** new interface as a view
```

Given this data class

```
class Flight {
   private List<Segment> Segments;
}
```

Traditionally

apply refactoring: Encapsulate Collection

Observer-Mediator-Actuator

Relationships

Implementing a stateful relationship

Topics

Role object life cycle

lifting, instance management, multiplicities

Team inheritance

specializing whole frameworks w/ propagation

Patterns

- Connector: separating implementation ← binding
- Base class generalization: post-hoc super type
- Virtual restructuring: changing structure not code

>>

Architectures

Observer-Mediator-Actuator, Stacking, Nesting, Layering

Component technology

OT/Equinox: architecture level aspect bindings