
Eclipse plugin adaptation with Equinox and
ObjectTeams/Java

Stephan Herrmann Christine Hundt∗∗ Carsten Pfeiffer∗

Technische Universität Berlin Fraunhofer FIRST

{stephan,resix}@cs.tu-berlin.de carsten.pfeiffer@first.fhg.de

ABSTRACT
Although Eclipse provides powerful mechanisms for exten-
sion this flexibility is constrained by depending on the fore-
sight of each plugin’s developers: extension points have to
anticipate future extensions, access restrictions aim for en-
capsulation but sometimes sacrifice adaptability, and the
rule of ”adding, not replacing” imposes difficulties on some
forms of reuse. As a result, some Eclipse-based projects take
the cumbersome road of duplicating significant amounts of
plugin-code, just in order to insert their specific adaptations,
leading to maintenance nightmares abound. This position
paper presents the aspect-oriented programming language
ObjectTeams/Java as an alternative for smoothly adapting
existing plugins. We have developed a small plugin that uti-
lizes the new hooks in the OSGI framework in order to sup-
port load-time aspect weaving for Eclipse plugins written in
ObjectTeams/Java. While this work builds upon some expe-
rience from previous works regarding AspectJ [7] we briefly
discuss why we believe that the use of ObjectTeams/Java for
Eclipse plugins should lead to even cleaner architectures.

1. REUSE CONFLICTS
The Eclipse plugin concept supports different scenarios for
software composition and re-use which are difficult to clas-
sify using traditional concepts such as modules, components
or frameworks. Some combinations of plugins interoperate
in a style that strictly adheres to a black-box component
model. Other plugins should rather be classified as frame-
works where substantial white box knowledge is used to cre-
ate specialized versions of the original plugin. Ideally, such
specialization is performed using extension points and public
API only. In real life it frequently occurs that perhaps just
one extension point is missing for a required adaptation, or
a class or member lacks the necessary permissions to access
or override. This problem can not be blamed on the devel-
opers of reusable plugins, but is inherent to the situation of
framework development in general. The roles of framework
developer and application developer are inherently in con-
flict: The framework developer wants to protect his or her
software by using encapsulation and only explicitly exposing
specific adaptation points. The application developer wants
to have license to view and adapt each single piece of the
framework using sub-classing and overriding.

This conflict can further be sub-divided into two questions:

∗This work has been supported by the German Federal Min-
istry for Education and Research under the grant 01ISC04A
(Project TOPPrax).

1. Do adaptation points have to be declared explicitly or
should each element in a framework be considered a
potential adaptation point?

2. To which extent is encapsulation a discipline that leads
to correct and robust software, and at what point does
encapsulation turn against developers preventing them
from achieving their tasks?

Regarding question (1) we assume, that no framework de-
veloper ever can anticipate all future adaptations to be per-
formed on his or her framework. Even if this were possi-
ble the resulting design would be bloated with myriads of
specific configurable hooks that in most cases will never be
used at all. This is (in part) a technical question that can be
solved by providing more flexible means of adaptation. We
argue that on-demand adaptation points allow for a wide
range of valuable compromises between pre-planning and
ad-hoc adaptation.

Also question (2) can be mitigated by more flexible pro-
tection rules. However, the core of this conflict is a social
conflict: one developer owns a piece of software and wants to
protect this from other developers fooling around with this
piece, because this developer wants to protect him/herself
from being blamed for bugs that are produced by others.
More openness furthermore means additional maintenance
efforts because each detail, once publically exposed, must
be preserved during evolution. Application developers on
the other hand frequently only have these two options: (a)
breaking encapsulation (e.g., by copying large amounts of
source code and modifying it in-place) or (b) just not using
the given framework, because it cannot be adapted such as
to fulfil the new requirements.

In this paper we focus on technical support for new kinds of
modular designs for adaptable plugins. In the end we will
briefly discuss the social implications and how this technol-
ogy can be embedded into new forms of trading.

2. PLUGIN DESIGN WITH OBJECT TEAMS
The current Eclipse concept for plugin extension is antici-
pated adaptation via predefined extension points. Aspect-
oriented concepts generalize this extension mechanism by
the introduction of joinpoints which can bee seen as unantic-
ipated extension points. Further with aspect-oriented con-
cepts it is possible not only to add new behavior but also
to replace functionality of a plugin. With aspect-oriented

1



design principles it is thus possible to express new kinds of
relationships between Eclipse plugins.

In this sense the aspect-oriented programming model Ob-
ject Teams [1, 2] offers two new design options that help
mitigating the above re-use conflict: roles and controlled
decapsulation.

2.1 Programming with roles
Using Object Teams, aspects are constructed from special
classes called roles. A role class has the option to declare a
base class by which this role is played (using the keyword
playedBy). A role class can adapt the behavior of its base
class much like a sub-class can do with respect to its super-
class. The main difference between sub-classing and roles
lies in the fact that roles are kept as separate entities at
runtime. By this concept instances of a base class being
adapted are regular instances of that very class. Only by the
addition of a role instance a base instance will be adapted.
This means that roles can be added and removed at runtime
and that any number of roles may co-exist adapting the same
base instance.

This technique combines three valuable properties:

• Base instances are kept intact exactly as they were
originally implemented.

• Roles can be added independently from each other (of
course semantic interaction via the base instance may
have to be considered).

• The effect that roles have on their base entities may
change over time.

Roles are composed to so-called teams. Role classes can be
regarded as inner classes of team classes, each role instance
lives in the context of an enclosing team instance. The team
adds the following properties:

• A team creates roles on-demand whenever adaptation
of a base instance is needed for which no role exists
yet.

• A team instance can be activated or deactivated at
runtime which controls whether the behavior adapta-
tion of all its contained roles is effective or ineffective.

• Teams automatically maintain consistent graphs of col-
laborating role instances as views of corresponding
graphs of base instances. This allows to simultane-
ously adapt a number of base classes in a consistent
way. Individual roles of such a team may safely depend
on sibling roles as adaptors for (indirectly) related base
classes.

2.2 Controlled “decapsulation”
Object Teams coins the notion of decapsulation as the in-
verse of encapsulation. This means that a role class may
access features of its base class even if the normal rules
of encapsulation would prohibit such access. In contrast

to, e.g., AspectJ’s technique of privileged aspects, decap-
sulation is reported for each individual feature as a config-
urable compile-time error or warning. We consider devel-
oper’s awareness of the use of decapsulation as important.
This mechanism requires new rules of conduct for developers
to use the new power in a responsible fashion.

2.3 Infrastructure for ObjectTeams/Java
The core tooling for the programming language ObjectTeam-
s/Java [4] consists of a compiler1 which compiles regular
Java classes as well as the aspect code (teams and roles)
and of a runtime environment (OTRE) component respon-
sible for aspect weaving [5].

The OTRE comprises a set of class transformers, which an-
alyze and transform the byte code of Java classes in order to
achieve the weaving of aspects. This includes the insertion
of calls to the aspect code into base classes and the definition
of the precise effects of dynamic team activation.

The point in time at which these transformations have to
take place is the start of an application. Especially in the
case of plugin adaptation this is essential, because the af-
fected base classes are only available via the plugin jar files
and not necessarily as source code.

The first version of the OTRE uses the loadtime transforma-
tion framework JMangler [6]. JMangler aims at classloader
independence, hooking into the classloading mechanism and
enabling the transformation of classes loaded by every class-
loader except the bootstrap classloader (system classes).

We are currently developing a version that utilizes the Java
Programming Language Instrumentation Services (JPLIS)
API and agent mechanism of Java5. Because of the built-
in capability of JPLIS this approach depends even less on
specific classloaders. It even allows the adaptation of system
classes except for those that are needed by the transformer
component itself.

3. ADDING OBJECT TEAMS SUPPORT
TO EQUINOX

We have developed a prototype for adaptation of eclipse
plugins using Equinox. This prototype initiates the trans-
formation process by calling the transformation methods of
the OTRE. In this case we do not have to worry about the
classloader independence, because Equinox itself is respon-
sible for handling the eclipse specific classloaders.

3.1 Hooking into OSGI
Starting with Milestone 5 of Eclipse 3.2, the OSGI frame-
work supports so-called extension bundles that may hook
into OSGI’s functionality. For example, there are hooks
for byte code transformations as used for load-time aspect-
weavers. Our extension bundle provides implementations of
the new interfaces ClassLoadingHook and BundleWatcher.
The first interface mainly provides the following hook func-
tion:

byte[] processClass(String name, byte[] classbytes, ..);

1In fact this compiler is an adapted version of Eclipse’s Java
compiler from the JDT core.

2



By this hook we can easily dispatch to the byte code trans-
formers of the OTRE.

The other interface BundleWatcher allows us to observe the
status of all bundles while they are loaded. This hook man-
ages the interdependent life-cycle of aspects and the plugins
which they adapt. By this the following sequence of actions
can be established.

1. A transformer plugin that controls the actual class
loading is guaranteed to be activated early during
Eclipse’s bootstrapping.

2. For each plugin to be installed it is checked whether
any known aspect declares to adapt this plugin. Before
an adapted plugin is activated the following steps are
performed:

(a) The adapting team classes are loaded. From these
classes the OTRE receives its instructions to per-
form aspect weaving.

(b) The base classes adapted by the roles of each
loaded team are loaded, too.

(c) The adapting team classes are instantiated and
the team instance is activated, to enable the adap-
tation.

Given the new hooks in the OSGI, developing our trans-
former plugin was a straight-forward task, except for the
handling of different classloaders and their interdependen-
cies. We have to cope with four kinds of universes realized
by their specific class loaders:

1. OSGI Framework
A bootstrap class is installed and activated by the new
commandline argument -Dosgi.hook.configurators

.include=HookConfigurator. The hook configurator
installs the TransformerHook implementing the inter-
faces ClassLoadingHook and BundleWatcher as des-
cribed above. Thus, TransformerHook shares the ini-
tial classloader of the OSGI framework itself.

2. Transformer Plugin
The plugin org.objectteams.eclipse.transformer

defines an extension point for registering aspects. This
plugin implements the actual loading of team classes
and base classes in the order described above.

3. Aspect Plugin
Each aspect plugin defines one or more team classes
that are to be loaded in this plugin’s classloader. As-
pect plugins declare in their plugin dependencies which
plugins are needed because they contain base classes
to be adapted by the aspect.

4. Base Plugin
Of course also the adapted base plugin has its own
classloader.

The tricky point about this setup is a cyclic dependency
between classloaders: the aspect’s classloader (3) needs to
delegate to the classloaders responsible for the base class
to be adapted (4). During byte code transformation the

OTRE adds into these base classes code that in turn de-
pends on the aspect’s classes. Because this cyclic depen-
dency cannot directly be mapped to plugin dependencies
(which must not contain cycles) we had to develop a special
BridgeClassLoader. This classloader allows bi-directional
sharing of classes between two classloaders.

Declared plugin dependencies already support sharing of
base classes. The opposite direction of sharing is established
by the bridge classloader. This classloader is associated with
a base plugin but also knows about the aspect plugins adapt-
ing the given base plugin. Any class that cannot be found
by the base plugin’s classloader will be searched using any of
the adapting aspects’ classloader. Care must be taken not
to create infinite recursion if lookup in all these classloaders
fails, because each side may delegate to the other side to
find unknown classes.

3.2 Declaring Aspect Plugins
As mentioned above, we defined a new extension point for
registering plugins containing team classes. A plugin provid-
ing an extension to this extension point must list the names
of team classes to be loaded by the above mechanism. For
each team class it must also be declared which other plugin it
adapts. This is all a plugin developer must specify regarding
the relationship between an aspect plugin and those plug-
ins it wishes to adapt. At loadtime, the OTRE will derive
the set of adapted base classes from the role classes. That
information is then used to control the loading process.

This strategy differs from how standalone programs in Ob-
jectTeams/Java are configured. Generally, ObjectTeams/-
Java does not require any configuration files. A team has
only effect in a program if an instance is explicitly created
and activated. In order to support addition of aspects with-
out recompilation an ObjectTeams/Java program can op-
tionally be launched with a list of teams to be instantiated
and activated. This list is passed via a small configuration
file mentioned on the command line.

For aspects that should affect classes from another plugin a
more explicit management is desirable to raise visibility of
the adaptations incurred by an aspect. Using an extension
point for aspect declaration provides the necessary informa-
tion without requiring any change to the plugins affected by
the aspect.

In order to provide this information also to the Eclipse user
we adapted the “about plugins” dialog using an aspect.
First we made the unfortunate experience, that class About-
PluginsDialog poses a quite unforeseen restriction inher-
ited from jface’s Dialog: class Dialog must be loaded with
a valid Display set, because the static initializer of this
class tries to read the ImageRegistry of the current display.2

Since bundle loading does not happen in a valid UI-thread,
currently no subclass of Dialog can be loaded using this
mechanism.

As an intermediate solution we chose to adapt the About-
BundleData instead, which was again easy.

2See https://bugs.eclipse.org/bugs/show bug.cgi?id=142299.
It has been acknowledged that this design is not optimal.

3



4. SUMMARY AND FUTURE WORK
We have shown the successful combination of two powerful
technologies: the plugin concept of Equinox with its new
hooks and the language ObjectTeams/Java. By this combi-
nation it is now possible to let plugins extend and/or adapt
each other in far more flexible ways. Object Teams encour-
ages a developer to think in layers of collaborating roles.
This helps to find plugin designs which don’t just abuse
the new flexibility for “patching” places that are otherwise
inaccessible. Instead, a design of plugins written in Object-
Teams/Java should exhibit an excellent structure both in-
ternally as well as between interacting plugins. Team classes
are modules larger than plain classes, which support differ-
ent kinds of composition including inheritance. Pushing this
idea even further we can imagine to use the concepts of Ob-
ject Teams in order to define some kind of inheritance even
between plugins.

The price for the new flexibility is new flexibility, which is
to say: some rules which were strict before, can be ignored
using ObjectTeams/Java. As mentioned in the introduc-
tion this might be scary for original plugin developers. Our
language already supports a means against unwanted decap-
sulation: if a jar has sealed its packages, the encapsulation
of its classes can not be broken by decapsulation [3]. If anx-
ious developers would now start to seal all their packages in
all jars they produce, nothing would be gained.

To raise the problem to the appropriate level, we are plan-
ning to support a mechanism like confirmed joinpoints [8].
The idea is, that a class owner might confirm certain adap-
tations at certain points of his code, where these allowed
adaptations can also be filtered by who is doing the adapta-
tion. This way a plugin could acknowledge a specific other
plugin allowing that plugin access to some joinpoints. Such
confirmation would not affect any other client. Based on
this vocabulary a number of scenarios, migration paths etc.
can be thought of, along which developers with conflicting
interests can turn towards selective, explicit cooperation.
Perhaps, in commercial software development confirming a
joinpoint could cost a fee. We are convinced that many de-
velopers would rather pay this fee than having to choose
between ugly, non-maintainable workarounds or re-coding
the whole thing anew from scratch.

Aside from improving the plugin presented in this paper we
are planning to apply this technology for a number of plugins
thus evaluating the benefit of using ObjectTeams/Java for
the development of Eclipse plugins.

5. REFERENCES
[1] S. Herrmann and C. Hundt. ObjectTeams/Java

Language Definition version 0.8 (OTJLD).
http://www.ObjectTeams.org/def/0.8/, 2002–2005.

[2] Stephan Herrmann. Object Teams: Improving
modularity for crosscutting collaborations. In M. Aksit,
M. Mezini, and R. Unland, editors, Proc. Net Object
Days 2002, volume 2591 of Lecture Notes in Computer
Science. Springer, 2002.

[3] Stephan Herrmann. Sustainable architectures by
combining flexibility and strictness in Object Teams.
IEE Software, 151(2):57–66, April 2004.

[4] Stephan Herrmann, Carsten Pfeiffer, and Jan Wloka.
Aspect composition with ObjectTeams/Java in eclipse.
Demonstration at AOSD’05, 2005.

[5] Christine Hundt. Bytecode-transformation zur
laufzeitunterstützung von aspekt-orientierter
modularisierung mit object-teams/java (in german).
Master’s thesis, Technische Universität Berlin, January
2003.

[6] Günter Kniesel, Pascal Costanza, and Michael
Austermann. JMangler—A framework for load-time
transformation of Java class files. In First IEEE Int’l
Workshop on Source Code Analysis and Manipulation
(SCAM 2001), November 2001.

[7] M. Lippert. AJEER: An aspectj-enabled eclipse
runtime. Poster and Demonstration at OOPSLA’04,
October 2004.

[8] H. Ossher. Confirmed join points. In Proc. of the
SPLAT workshop at AOSD’06, Bonn, Germany, 2006.

4


