Aspects for Testing Aspects?

Dehla Sokenou, Stephan Herrmann
Technische Universitat Berlin
Software Engineering Group

Sekr. FR 5-6, Franklinstr. 28/29, D-10587 Berlin

[dsokenou|stephan]@cs.tu-berlin.de

ABSTRACT

Within the field of aspect-oriented software development,
testing can be discussed in two directions: (1) How can as-
pect technology help to build testing tools? (2) Which new
requirements does aspect technology used in the system un-
der test impose on the test strategy? In this paper we sug-
gest to discuss both questions in combination. We discuss
some prior work regarding each question and outline a per-
spective in which the application and also testing tools are
smoothly developed using the same programming language
and without the need for specialized instrumentation tools.
From this perspective we derive some requirements concern-
ing the aspect language used and also concerning the test
method.

1. INTRODUCTION

In the past, aspect-oriented techniques have focused on as-
pect-oriented programming. At present, there are new re-
search areas adressing aspect-oriented software engineering
(AOSE). This includes aspect-oriented modeling and test-
ing. Full synergy can be achieved by aspect-oriented mod-
eling if models are also suitable for model-based testing of
aspect-oriented.

Testing and aspects can be considered from two perspec-
tives. First, aspects can be used for testing systems, gen-
erally object-oriented systems. Second, aspect-oriented sys-
tems must be tested.

So far, both perspectives have been investigated separately.
In this paper, we look at some of the benefits of discussing
both perspectives together. We present an approach for test-
ing aspects using aspect technology, which raises some ques-
tions regarding not only the testing techniques and method
but also the aspect language used.

In Section 2, we present testing problems, their aspect-ori-
ented solution and the requirements for transferring the so-
lution to aspect-oriented programs. We consider two aspect-

oriented languages, AspectJ [2, 10] and ObjectTeams/Java
[14, 8], and examine them with respect to the given require-
ments. In Section 3, we look at the aspect-oriented fault
model in [1] to define requirements on the testing techniques
used. Finally, in Section 4 we present our conclusions and
give an outlook on future work.

2. TESTING AS A CROSSCUTTING CON-
CERN

Using aspect-oriented techniques for testing systems assumes
that testing is a crosscutting concern with respect to the sys-
tem under test (SUT). If testing is really a crosscutting con-
cern, we should encapsulate all testing functionality in an
aspect. This holds both for testing object-oriented systems
and aspect-oriented systems.

In most cases, testing involves inserting additional code into
the SUT. The new code is tightly coupled with the system
under test and spreads across the whole system. This is
typically known as scattering and tangling. Examples of
crosscutting test code are:

e The SUT must be in a specific state before we can
execute test cases. Normally, initialization and test-
case execution are done by test drivers, which need
privileged access to the SUT.

e The answer and state of the SUT must be observed
and a verdict must be derived by a test oracle.

Both test drivers and test oracles must normally be removed
after testing.

Adaptation of the SUT is classically done by automatically
instrumenting the SUT using a specialized tool. Most of the
tools focus on only one instrumentation problem, e.g. con-
trol flow coverage. Aspect-oriented programming is more
flexible than classical instrumentation. Aspect languages of-
fer the programmer many options that are otherwise avail-
able only when using sophisticated instrumentation tools.
All instrumentation code can be collected in a small num-
ber of modules. The instrumentation may cover more than
one problem. Aspects have privileged access to the adapted
implementation, here the SUT. The original source code is
not modified and aspects can easily be removed. Here, we
see the advantages of using a load-time or runtime weaver
instead of a compile-time weaver because deployment is fa-
cilitated if compiled code is not modified.



Given these capabilities, an aspect language may replace
much of the technology used in classical instrumentation
tools. Thus, tools are more light-weight and easier to de-
velop. As a result, we envision libraries of testing aspects,
which can easily be adapted to the needs of each specific
project, i.e. a project can define its tailored testing method
and compose the supporting tool suite from such reusable
aspects. For these reasons, there is a lot of research on
aspect-oriented programming for testing (see, for example,
[4, 12, 15, 3, 16]).

On the other hand, using aspects for testing is not yet a
complete solution. Today, aspect-oriented languages do not
allow us to insert code per line or statement which is needed
for, say, source code coverage criteria. A flexible instrumen-
tation technique requires testing tools to support the tester
in all areas covered by traditional testing tools.

If testing is a crosscutting concern, why don’t we try to
transfer successful approaches from the field of object-ori-
ented testing with aspects to aspect-oriented testing? This
means testing aspects with aspects.

Although it may seem easy to transfer object-oriented test-
ing techniques to aspect-oriented systems, we are faced with
several problems. How can we adapt aspect-oriented pro-
grams? Will application aspects and testing aspects inter-
fere? Can application aspects be tested by testing aspects?

In the following sections, we outline solutions for testing
object-oriented systems using aspect-oriented techniques.
We then define requirements for aspect-oriented languages
which allow the testing of aspects with aspects.

2.1 Test Oracles

Most of the related work focuses on realizing test oracles
with aspects. Popular approaches are checking pre- and
post-conditions and class invariants [15, 3] and implement-
ing state-based test oracles with aspects [4, 16]. Another
approach focuses on integrating mock objects into the SUT
[12].

Here, we concentrate on checking contracts and states with
aspects, two of our own research topics.

2.1.1 Example: Design by Contract

To support testing, a program can be extended by pre- and
post-conditions and class invariants. These parts of a con-
tract between client and server are typically part of the spec-
ification and can be checked at runtime. The object-oriented
language Eiffel has built-in support for contracts which can
be checked at runtime. However, such a capability is lacking
in main-stream programming languages. Here, an aspect-
oriented language can be used to check the pre-condition
before a method is called, and check the post-condition af-
ter a method has been executed. Class invariants must be
checked before and after method execution.

When subtype polymorphism comes into play, the contract
of any subclass must ensure substitutability with respect to
its superclass. A client making any assumptions based on
the static type of a supplier must remain valid if a method
call is actually answered by an object whose dynamic type is

a subtype of the expected type. The rules of subcontracting
ensure exactly this required conformance.

Figure 1 shows this situation. The client only has to en-
sure the pre-condition of the supertype method, but the
pre-condition of the subtype method must also hold. The
subclass server must ensure its own post-condition but the
client expects the post-condition of the superclass server.

Regarding aspects, the contracts must be extended (see Fig-
ure 2). Aspect code should have its own pre- and post-
conditions. Conceptually, this calls for a chain of checks,
as pointed out in [13]: the checking of a method’s pre-
condition, e.g., has to be split into the client side, where the
pre-condition of the static receiver type is checked and, just
before entering the actual method code, the pre-condition
associated to the dynamic receiver type must be checked.
Between these two checks, an arbitrary number of before
advices may intercept the control flow, each having its own
pre- and post-conditions. These steps are important in or-
der to assign the blame to the right party whenever any
assertion is violated.

The distinction between call and execution join points is an
important step toward weaving assertion checks into the cor-
rect points within the control flow. However, adding asser-
tions to an existing aspect by means of an additional testing
aspect reveals a weakness in current join point languages:
these languages (as part of an aspect language) focus on
identifying points in the control flow of ordinary classes.
Support for aspects of aspects is mostly insufficient. Even
the newly introduced keyword adviceexecution of AspectJ
does not provide a complete solution because it does not al-
low us to attach an aspect to a specific advice. This closely
relates to orthogonality issues as discussed in [7]. The au-
thors critize that new language features of aspect languages
cannot be applied freely to each other. The lack of pointcuts
for a specific advice is an example of this lack of orthogo-
nality.

In ObjectTeams/Java, the situation is simpler because no
distinction is made between method and advice. All aspect
code is written in named methods, too. Thus, there is no
problem with attaching an aspect to a given piece of aspect
code.

2.1.2 Example: State-Based Testing

Aspects can be used to implement statecharts as test oracles
and to integrate them into the SUT. In [4], a statechart hier-
archy is flattened before statecharts are integrated into the
system under test. Our approach (see [16]) supports state-
chart hierarchies without flattening, the history connector,
and parallelism. It does so by using the programming lan-
guage ObjectTeams/Java, which allows aspects to be acti-
vated and deactivated at runtime. We consider dynamic
aspect activation and deactivation as essential for efficient
state-based testing. The capabilities of ObjectTeams/Java
for controlling aspect activation have proved highly suitable
for this task.

If we wish to transfer state-based testing techniques to aspect-
oriented systems, we first have to specify aspect-oriented
systems with statecharts or other state machines.



CLIENT SERVER

~ service ()
~N
~N
N :
N {pre} service() {post}
N
N
~N
N
N
—» static reference ~d SERVER’

— —P» dynamic reference

EE implication

service’ ()

{pre’} service’ () {post’}

Figure 1: Design by contract in object-oriented systems.

CLI ENT SERVER

N\

\ service()
\\{ pre}__ service() ____ {post}

N
\
N\

ASPECT

bef ore_adv()

{pre_a} before_adv() {postla}
\
<
SERVER

service’ ()

{pre'} service' () {post’'}

Figure 2: Design by contract in aspect-oriented systems.



An extension of statecharts by aspects is not needed if we
consider aspects only as a technical realization of a prob-
lem and statecharts as a specification of the input/output
behavior with hypothetical states (black-box view). In this
case, we consider statechart models independently of imple-
mentations. The work on event-based aspect-oriented pro-
gramming [6] hints at similarities between aspect-oriented
programming and trigger-action systems'. Thus, the gap
between statecharts and an implementation may actually
decrease when using aspect-oriented programming. On the
other hand, state machines can be extended by aspect-ori-
ented features, as in the state-based approach to testing
aspect-oriented systems presented in [17]. Since object-ori-
ented statecharts are closely related to object-oriented sys-
tems (transitions are triggered by method calls), aspect-
oriented statecharts can be closely related to aspect-oriented
systems triggering transitions by pointcuts.

The requirements for the aspect-oriented language are sim-
ilar to the ones defined in the design by contract section
because the state of the SUT must be checked before and
after a state-changing event, generally a method call. So,
again, we need pointcuts of pointcuts and/or advices.

2.2 Test Driver

Besides implementing test oracles, we have experimented
with aspect-oriented test drivers. Our test drivers consist
of two modules: a regular OO program, which establishes
initial states for tests and aspects which perform suitable
tests on an initial state. In our example, the pointcut is
every creation of an object in a class hierarchy. If an object
of the superclass or one of its subclasses is created, it is
tested with the superclass test suite. The test-driver aspects
ensure that only one object of each type is tested.

Similar approaches are possible for testing aspects. Class
hierarchies are similar to aspect cascades. In object-oriented
systems, a server can be accessed by a client of the declared
type or some of its subtypes. A client can access a server
of the declared type or some of its subtypes. In aspect-
oriented systems, a base object must behave correctly with
or without aspects and an aspect must behave correctly in
all contexts defined by the pointcuts.

One question is: Can we develop test drivers that can test
aspect cascades? A test driver must know which aspects
have already been tested with which base objects. This is
not a trivial problem. We must know which join points are
collected by a pointcut and we must calculate the difference
between all join points and those already executed. And
how can we force the application to execute specific advices,
in particular regarding dynamically activated aspects or as-
pects depending, e.g., on control flow? A complete aspect-
oriented control-flow analysis is needed.

n [9] we show, how the language ObjectTeams/Java is
extended with guard predicates in order to realize the full
separation into events, conditions and actions (ECA). The
scheme of ECA-triplets has proven useful as part of the stat-
echarts formalism. The same concept can now be applied
even at the programming language level, which we are cur-
ren[tly] exploring for implementing test-oracles as presented
in [16].

A second question is: What is a minimal criterion for cover-
ing aspect-oriented SUT? Is covering all aspects enough, or
must every aspect be tested with all base applications and
the base application with all aspects? In object-oriented
languages, not all possible control flows are tested. In most
cases, we do not test all subclasses on the client side with
all subclasses on the server side. The combinatorial prob-
lem of testing is reduced using a fault model or heuristics.
An aspect-oriented fault model is presented in [1] (see Sec-
tion 3). Heuristics on typical and common faults in aspect-
oriented systems are not yet available.

A third question is: How can we switch between test ini-
tialization and test execution? For this task the capability
to explicitly activate an aspect during program execution
is very handy. In AspectJ, a test driver could switch to
test modus with a cflowbelow pointcut like !cflowbelow(
call(*.testInit*(..)). However, this pointcut would have
to be part of every pointcut used for integrating the testing
aspect. For this kind of switching explicit activation is more
modular.

3. ASPECT-ORIENTED FAULT MODEL

Requirements for aspect-oriented languages can also be ex-
tracted from the aspect-oriented fault model presented in
[1]. There, we find six classes of aspect-oriented faults. Our
question is whether an aspect-oriented language can avoid
the cause of these faults. Increasing the language strength
can reduce failures (much as a typed language reduces type
failures at runtime). We believe that increasing language
strength can help avoid some of the faults resulting from
incorrect aspect precedence or changes in control depen-
dencies. In some cases, the SUT can only be tested if the
aspect-oriented language supports the testing strategy, e.g
faults resulting from incorrect strength of join points.

Incorrect strength of join points. A pointcut can be
specified too strong or too weak. In the first case,
not all necessary join points will be collected. In the
second case, join points are collected that should be
ignored. Faults resulting from the incorrect strength
of pointcuts can be found if we can decide which join
points are already covered by the test (see also the test
driver section in Section 2).

Incorrect aspect precedence. The order of woven as-
pects can affect system behavior. If aspects are not
independent, an aspect precedence must be defined.
Independent aspects can be executed in any order. In
a program with an undefined aspect order, all aspect
orders may have to be tested. An undefined order
might be acceptable to the programmer, but for test-
ing this opens up new combinations that would have
to be tested. Thus, from the testing perspective, each
program should have an aspect order that can be deter-
mined from the program, in order to avoid unnecessary
tests.

Failure to establish expected post condition. The
client of an object does not know that the server is
adapted by one or more aspects. The post-condition
it expects is the post-condition of the server objects



method (see also the design by contract section in Sec-
tion 2). The problem is similar to subcontracting. The
pre-condition of a subclass’s method must be weaker
than or equal to that of the superclass’s method, and
the post-condition stronger than or equal to that of
the superclass’s method. Thus, in languages like Eiffel,
both pre-conditions are combined by a logical OR, and
both post-conditions by a logical AND. [13] conciders
precisely what implications must hold when combining
contracts of aspects with the contract of the original
method. Thus, the design by contract testing approach
can indeed be extended for aspect-oriented programs.

Failure to preserve state invariants. An aspect has ac-

cess to attributes of its adapted objects. Access to
attributes can violate state invariants. Here, we rec-
ommend a state-based testing approach like the one
presented in [16]. States of the adapted objects have
to be tested without knowledge of aspects.
Testing can, of course, be reduced if static analysis
yields that an aspect only reads but never changes the
state of its base object(s). Thus, the distinction be-
tween observers and assistants ([5]) can be of great
help for testing, too.

Incorrect focus on control flow. Often, a decision about
pointcut selection or advice activation is needed at
runtime. Dynamic aspect activation and join point
selection can cause faults that are difficult to find. Al-
though languages with static aspects and static join
point selection have advantages here, we do not want
to restrict our approach to static aspect-oriented lan-
guages. Instead, better tools are needed. It already
helps the testing tool if reflection mechanisms exist
that enable a list of active aspects to be obtained for
analysis. In ObjectTeams/Java, for example, such a
capability can easily be constructed by intercepting
all calls to activate and deactivate.

Incorrect changes in control dependencies. When us-
ing an around advice, changes in control-flow depen-
dencies can be incorrect, e.g., if a proceed call is lack-
ing. Control-flow analysis can help to avoid or de-
tect these faults. If proceed is not called, the devel-
oper should be notified in form of a warning. Object-
Teams/Java generates such a warning if a call of the
base method is missing in any branch of the control
flow within a callin replace method?. The same
holds for (potentially) duplicate base calls.

The next section summarizes our thoughts on testing aspects
using aspect-oriented techniques and our requirements for
aspect-oriented languages to support testing.

4. CONCLUSION

We see considerable advantages in using aspects for testing
aspects. Aspect-oriented techniques are well suited when
testing object-oriented systems, so why step back when test-
ing aspect-oriented systems? But to transfer aspect-oriented
testing techniques to aspect-oriented SUTSs, we need lan-
guages that smoothly support aspects of aspects.

2A replace method is similar to an around advice in As-
pectJ.

Requirements for aspect-oriented languages can be summa-
rized as follows:

A flexible join point language is needed to encapsulate
general testing purposes in one aspect.

e We need join points for advices to instrument aspects
as well. Generally, testing aspects using aspects em-
phasizes the importance of language orthogonality, as
is discussed in [7].

e Aspect activation at runtime can help to implement
dynamic test support, like state-based test oracles. It
can also help to separate the initialization phase of
testing from actual test execution.

e Reflection mechanisms have to be extended so that
information about actual join points, pointcuts and
advices can be obtained.

e A good control-flow analysis by the compiler can re-
duce faults resulting from incorrect changes in control
dependencies, e.g. from forgotten proceed statements.

e Code weaving at load- or runtime facilitates deploy-
ment of the SUT because it avoids maintaining two
versions of the same software, one with testing aspects
and another without.

ObjectTeams/Java seems to have advantages for testing as-
pects with aspects because aspects can have other aspects
as their base and explicit aspect activation can be controlled
from within the program. Deployment is facilitated by using
a load-time weaver. See [11] for a successful example of the
use of load-time byte code adaptation for testing. The work
presented uses the same framework —JMangler— as is used
by the runtime enviroment of ObjectTeams/Java.

However, the current version of ObjectTeams/Java does not
yet have a sophisticated join point language like AspectJ.
Thus, AspectJ has advantages for building general test as-
pects. Also, AspectJ has changed the weaving strategy from
source-code to byte-code weaving. Support for load-time
weaving is emerging, but it is not yet clear how much of the
deployment issue is solved by this technology.

However, neither language supports code instrumentation
per line or statement.

Our future research will focus on investigating better test-
ing techniques based on aspect-oriented programming tech-
niques. We wish to transfer these techniques to both object-
oriented and aspect-oriented languages. Our goal is to de-
velop testing tools that support object-oriented as well as
aspect-oriented parts of a system under test.

When analyzing the different goals and requirements of tools
for test instrumentation and current aspect languages, there
is still a chance that full integration of these two techniques
might prove unfeasible. For example, per-sourceline aspects
might not be desirable for general-purpose aspect languages,
but they would be needed for instrumentation using aspects.
In that case, we suggest developing a shared tool platform



that provides the needed low-level facilities. Test instru-
mentation and aspect languages could then simply be seen
as different front-ends to the same machine. So far, it is
not yet clear whether this common platform would just be a
regular meta object protocol or whether more specific com-
monalities will prevail.

Despite this question, we believe that aspects can be used
for testing aspects. Applying techniques designed for testing
object-oriented systems to aspect-oriented systems is a step
toward developing testing techniques for aspect-oriented sys-
tems. However, some of these techniques must be adapted
to the special features of aspect-oriented programs.

5. REFERENCES
[1] R. T. Alexander, J. M. Biemann, and A. A. Andrews.
Towards the Systematic Testing of Aspect-Oriented
Programs. Technical report, Colorado State
University, Department of Computer Science, USA,
2004.

[2] AspectJ-Homepage. htpp://www.aspectj.org.

[3] L. C. Briand, W. Dzidek, and Y. Labiche. Using
Aspect-Oriented Programming to Instrument OCL
Contracts in Java. Technical report, Carlton
University, Canada, 2004.

[4] J.-M. Bruel, J. Araijo, A. Moreira, and A. Royer.
Using Aspects to Develop Built-In Tests for
Components. In AOSD Modeling with UML
Workshop, 6th International Conference on the
Unified Modeling Language (UML), San Francisco,
USA, 2003.

[5] C. Clifton and G. T. Leavens. Observers and
Assistants: A Proposal for Modular Aspect-Oriented
Reasoning. In FOAL 2002: Foundations of
Aspect-Oriented Langauges (AOSD-2002), pages
33-44, Mar. 2002.

[6] R. Douence, O. Motelet, and M. Siidholt. A Formal
Definition of Crosscuts. Lecture Notes in Computer
Science, 2192:170-184, 2001.

[7] K. Graversen and K. @sterbye. Aspects of Aspects —
a Framework for Discussion. In Furopean Interactive
Workshop on Aspects in Software, 2004.

[8] S. Herrmann. Object Teams: Improving Modularity
for Crosscutting Collaborations. In Objects,
Components, Architectures, Services, and Applications
for a Networked World (Net.ObjectDays Conference),
volume 2591 of Lecture Notes In Computer Science,
Erfurt, Germany, 2002. Springer.

[9] S. Herrmann, C. Hundt, K. Mehner, and J. Wloka.
Using Guard Predicates for Generalized Control of
Aspect Instantiation and Activation. In Dynamic
Aspects Workshop (DAW’05), at AOSD 2005,
Chicago, 2005.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of the 15th European
Conference on Object-Oriented Programming

(11]

(12]

(16]

(17]

(ECOOP), volume 2072 of Lecture Notes in Computer
Science, Budapest, Hungary, 2001. Springer.

G. Kniesel and M. Austermann. CC4J - Code
Coverage for Java - A Load-Time Adaptation Success
Story. In Proceedings of the 1°* IFIP ACM Working
Conference on Component Deployment, number 2370
in LNCS. Springer, 2002.

N. Lesiecki. Test Flexibility with AspectJ and Mock
Objects. http://www-
106.ibm.com/developerworks/java/library /j-
aspectj2/?loc=j.

D. Lorenz and T. Skotiniotis. Contracts and Aspects.
Technical Report CCIS-03-13, Northeastern
University, Boston, 2003.

Object Teams-Homepage.
http://www.objectteams.org.

M. Richters and M. Gogolla. Aspect-Oriented
Monitoring of UML and OCL Constraints. In AOSD
Modeling With UML Workshop, 6th International
Conference on the Unified Modeling Language (UML),
San Francisco, USA, 2003.

D. Sokenou and S. Herrmann. Using Object Teams for
State-Based Class Testing. Technical report,
Technische Universitdat Berlin, Fakultat IV -
Elektrotechnik und Informatik, Germany, 2004.

D. Xu, W. Xu, and K. Nygard. A State-Based
Approach to Testing Aspect-Oriented Programs.
Technical report, North Dakota University,
Department of Computer Science, USA, 2004.



