
Using Object Teams for State-Based Class Testing

Bericht-Nr. 2004/10

Dehla Sokenou, Stephan Herrmann

ISSN 1436-9915

Using Object Teams for State-Based

Class Testing

Dehla Sokenou, Stephan Herrmann

Abstract

Statechart models are often used to specify the behaviour of objects. This paper
presents a technique for testing object-oriented classes using their statechart
specification.

Aspect-oriented programming integrates additional code into existing classes.
Program instrumentation for testing and monitoring systems is one application
domain of aspect-oriented programming.

The presented approach is based on the Object Teams [17] programming
model which combines aspect-oriented and role-based programming.

Object Teams are used to implement statechart specifications, thus making
them executable. The executable statechart specification is bound in an aspect-
oriented manner to the implementation under test and is used to dynamically
validate the implementation of a class.

The paper demonstrates the advantages offered by Object Teams’ charac-
teristics for object-oriented class testing.

Keywords:

model-based testing, test oracles, UML statecharts, aspect-oriented program-
ming

1 Introduction

The Unified Modeling Language [19] defines two different kinds of statecharts,
behavioural state machines and protocol state machines. Behavioural state
machines are typically used to specify system behaviour, while protocol state
machines can be used to specify the behaviour of objects.

Our approach is to use protocol state machines as test oracles to validate the
implementation of a class. We use the Object Teams [17] programming model
to implement the statechart specifications, thus making them executable.

1

The Object Teams programming model combines several programming tech-
niques, primarily aspect-oriented [11] and role-based programming [12]. [8] gives
further details.

Aspect-oriented programming integrates additional code into existing classes.
Program instrumentation for testing and monitoring systems is one application
domain of aspect-oriented programming. In our approach, aspect-oriented fea-
tures of the Object Teams programming model are used to integrate test code
into classes under test in a non-invasive manner.

We implement statecharts as roles of objects under test. Roles remain in-
dependent objects with their own states even at runtime. This technique has
several advantages, which are presented in this paper.

The paper is organized as follows. In Section 2, we introduce the basic for-
malism and give a brief overview of state-based test oracles for object-oriented
programs. Section 3 gives a brief introduction to the Object Teams program-
ming model. In Section 4, we explain our approach to implementing statechart
models in ObjectTeams/Java, an implementation of the Object Teams program-
ming model for the Java language. Some requirements for the applicability of
our approach are described in Section 5, followed by an overview of related work
in section 6. Section 7 contains a summary and outlook.

2 Statecharts as Test Oracles

A state-based testing strategy can detect many different kinds of faults resulting
from an incorrect implementation of the specified model. Typical faults are
incorrect resultant states or incorrectly accepted or refused messages. A good
overview of faults detectable by test oracles based on statechart specifications
can be found in [16] and [1].

A statechart model can describe the behaviour of objects in a similar way
to, e.g., the life cycle model in Fusion [3]. The UML [19] defines protocol state
machines for describing object behaviour. In our approach, we concentrate on
class testing. A statechart specification in this context means the specification
of object behaviour. Thus we focus our attention on protocol state machines.

The semantics of protocol state machines differs from the semantics of be-
havioural state machines in some points. Transitions in protocol state machines
are triggered by call events. A call event refers to a method of the attached
class. States are identified by the attribute values of the corresponding object.
Protocol state machines refer to all methods that generate state changes. These
methods are called update methods. Methods that generate no state change,
so-called query methods, are not presented in the state machine. Transitions in
protocol state machines have no associated explicit actions.

For class testing, a statechart implementation (see Section 3) is generated
from the protocol state machine specification. Statechart objects are bound
to objects under test. Every method call to an object under test is forwarded
to the corresponding statechart objec, which calculates the expected resultant
state on the basis of the actual state and the given call event. The actual state

2

Object
under Test

Executable
Statechart

notify event calls

check state

Figure 1: Statechart object and object under test.

Statecharts System under test

Object

observes

Link

Figure 2: Statecharts system and system under test.

of the object under test is then compared with the expected state (see Figure
1).

Figure 2 shows the system under test and the statechart objects. Every
object in the system is observed by a corresponding statechart object.

Our approach can be used to support system testing with certain restrictions.
One of these restrictions is that no relationship between objects is considered.
Each statechart object only has access to its own object under test and no
connection to other statechart objects exists. Only the set of individual object
behaviours in a system is tested (see Figure 2).

3 A Brief Introduction to Object Teams

The Object Teams programming model combines several approaches of other
programming paradigms and techniques. It introduces a new module concept,
the team. Teams are packages that group classes for structuring systems (static
view) and also composite objects that are used as containers for objects (dy-
namic view).

Teams can be handled like normal classes, including instantiation and in-
heritance. Instances of a team are containers for objects defined within the
team.

Elements of a team define the roles of objects, implemented as inner classes.
Roles are partial views of objects in different contexts. Roles are bound to the
objects of a base system. Objects of the base system are called base objects. We

3

Bank SystemBank Team

Account

Customer

RoleA

RoleC

played by

played by

Figure 3: Team and base system

use ObjectTeams/Java, which realises the Object Teams programming model
for the Java language. A base system can be any application written in Java,
e.g. packed in a jar archive.

For example, we have an existing bank system1. We wish to adapt the bank
system with a team to extend the given implementation (e.g. we may want
to introduce a bonus for special transactions). In Figure 3, the adapted base
system is shown on the right side, the team on the left side. The role classes in
the team are bound to the bank classes, RoleA being played by objects of type
Account and RoleC being played by objects of type Customer2.

One of the basic concepts in Object Teams is the aspect-oriented [11] ap-
proach, which is used to weave code3 into base classes. In the Object Teams
world, call-in binding is the technique that realises aspects. Unlike other aspect-
oriented programming languages, the Object Teams programming model does
not yet have any sophisticated join point languages. In particular, there is a
lack of quantification. In languages like AspectJ [10], quantification is offered
by the wild card notation and a set of point-cut designators. The additional
code can be executed before or after a method of the corresponding base object
is executed or can either replace the method of the base object.

The opposite of call-in binding is call-out binding. Methods of the role are
forwarded to methods of the base object. The role object has privileged access
to the corresponding base object, and call-out methods can access all methods
of the base objects including private methods. All methods of the base object
called from the role object must be explicitly referenced by call-out binding.
Call-out bindings offer a limited view on a base object.

Call-in and call-out methods can have mismatching signatures to the bound
methods in the base system. Defining parameter mapping is optional.

In Object Teams, code weaving is done at load time. Only the teams must
be compiled with the Object Teams compiler, not the base system. The base
system can be compiled using a standard Java compiler, which can even be

1Bank account is used as a running example throughout the paper.
2The term played by for the relation between role and base object originates from role-based

programming and is found as a keyword in Object Teams to bind a role to a base.
3Code weaving is the technique used to adapt an existing implementation by means of new

code.

4

Account

balance : Integer
blocked : Boolean
closed : Boolean

deposit (amount:Integer)
withdraw (amount:Integer)
block
unblock
close
getBalance() : Integer
isBlocked() : Boolean
isClosed() : Boolean

Figure 4: Static view of account.

provided by a third party. No source code is needed for adaption.
The Object Teams programming model offers lifting of base objects to their

roles. Lifting means retrieving a role for a given base object. The opposite,
retrieving a base object from a role object, is called lowering. Lifting and
lowering are never explicitly invoked by client code. These translations are
performed automatically by the Object Teams runtime system.

Teams can be activated or deactivated at runtime. If a team is active, all
call-in bindings are enabled; if it is deactivated, they have no effect on the base
system. An inactive team holds its state and also the state of its contained
roles until it is reactivated. The Object Teams runtime system guarantees that
a base object is always lifted to the same role in a team. After team activation,
all base objects are lifted to the same roles they had before deactivation. The
states of these roles are preserved. The activation order effects the execution
order of call-in methods.

A more detailed introduction to Object Teams is given in [8].
In the next section, we explain how we use the Object Teams’ features for

state-based class testing and point out the specific benefits of our approach.

4 Team-Based Class Testing

To illustrate our approach, we introduce a short example, a bank account. An
account can be open, blocked or closed, and money can be deposited or with-
drawn. Figure 4 shows instance variables and methods of class Account.

The basic idea is to implement the statecharts as roles in Object Teams. The
statechart teams are automatically generated. Below, we give an overview of the
generated implementation and show which statechart features are supported.

The executable statechart is defined as a role played by the object under
test, here the account object (see Figure 5).

5

Bank SystemAccountSC

Account

Customer

Statechart
played by

Figure 5: Statechart team and bank base system

One of the advantages of implementing the statecharts as teams is the inte-
gration of test code into the classes under test in a non-invasive manner4. The
code of the classes under test does not require any change or recompilation.

Figure 6 on page 7 shows a code fragment of the implemented statechart for
the bank account in the team class AccountSC. The role Statechart is played
by objects of type Account.

The instance variable state in the statechart role is used to store the ex-
pected state of the object under test. In the example, the initial state of the
bank account is open. The other instance variable, openState, is introduced in
Section 4.1.

Every method call to an object under test is intercepted and transmitted
to the statechart by the call-in mechanism. We use this to log every method
call and check the state of the object under test. The state check compares
the expected state with the actual state of the object under test. For update
methods, there are corresponding methods implemented in the statechart that
are called as a result of call-in bindings after the update methods of the account
object have been executed. The corresponding methods implement the state
change in the statechart object and call the method checkState afterwards.

In the code fragment shown in Figure 6, the call-in bindings can be found in
the Call-in bindings part of the implementation5. The method logMethod-
Call is executed before an update method is executed, the method checkState
afterwards. The method checkState is responsible for comparing the expected
with the actual state of the object under test. The binding of the method
logMethodCall is an example of parameter mapping in Object Teams. In our
case, it has to distinguish different methods that are bound to logMethodCall.

The method checkState is not directly called by the call-in binding mech-
anism if the update method close is called. The method close has a corre-
sponding method with the same name and signature, which is called after the
method close of the object under test has been executed. The implementation
of the corresponding method close can be found in the Trigger events part.
The corresponding method close compares the expected with the actual state

4This is also called non-invasive instrumentation.
5Call-in bindings are denoted in Object Teams by the symbol <-.

6

public team class AccountSC {

 private Statechart myAccount;

 public AccountSC() {
 this.activate();
 }

 public void setRole(Account as Statechart asc) {
 myAccount = asc;
 myAccount.init();
 }

/* Role class */
 class Statechart playedBy Account {

 private int state = OPEN;
 private OpenSC openState;

 /* Initialize Role */
 private void init() {
 openState = new OpenSC();
 openState.setRole(this);
 }

 /* Check state by comparing expected and current state */
 void checkState() {
 if (this == myAccount) {
 if (state == CLOSED) {
 if (isClosed()) logState ();
 else logStateError ();
 } } }

 /* Trigger events */
 public void close () {
 if (this == myAccount) {
 openState.deactivate();
 System.out.println("Team 2 deactivated: " + getHashCode());
 state = CLOSED;
 checkState();
 } }

 /* Call-in bindings */
 void logMethodCall(int id) <- before void deposit(int amount) with {id <- 0};
 void logMethodCall(int id) <- before void withdraw(int amount) with {id <- 1};
 void logMethodCall(int id) <- before void block() with {id <- 2};
 void logMethodCall(int id) <- before void unblock() with {id <- 3};
 void logMethodCall(int id) <- before void close() with {id <- 4};
 checkState <- after deposit, withdraw, block, unblock;
 close <- after close;

 /* Call-out bindings */
 abstract int getBalance(); getBalance -> getBalance;
 abstract boolean isClosed(); isClosed -> isClosed;
 abstract boolean isBlocked(); isBlocked -> isBlocked;
 abstract int getHashCode(); getHashCode -> hashCode;

 /* Log Methods */
 [...]
 } }

Figure 6: Account statechart implementation

7

close
closed

Account

open

deposit

withdraw withdraw
 [amount =
 self.balance]

withdraw
 [amount >
 self.balance]

deposit
[amount >
 -self.balance]

deposit
[amount =
 -self.balance]

empty

creditdebit

deposit
[amount <
 -self.balance]

withdraw
deposit

withdraw
[amount <
 self.balance]

Figure 7: Hierarchical statechart for account.

and then calls the method checkState. In ObjectTeams/Java, two or more
call-in bindings are not permitted for the same method in the same way (be-
fore or after) to avoid nondeterministic situations at runtime. Thus the method
checkState cannot be called directly by call-in binding in this case.

Call-out bindings are used to access query methods. They are needed to
calculate the actual state of the object under test.

In the account example, call-out bindings6 (in the Call-out bindings part)
refer to the query methods getBalance, isBlocked, isClosed and hashCode.
A mechanism not used in this example is the ability to access even private
methods of the base object by means of the call-out mechanism.

After outlining the basic implementation idea, we present four different state-
charts that specify the bank account in the following sections. Each statechart
specification serves to illustrate how our approach supports specific statechart
features. First, we present a simple statechart with hierarchy. The second
statechart includes the history connector, and the third combines two parallel
statecharts. Finally, we explain how we deal with nondeterminism.

4.1 Hierarchy

Figure 7 shows a hierarchical statechart specification of an account. First, we
look at the hierarchy levels separately, as in Figure 8. Each level is implemented

6Call-out bindings are denoted in Object Teams by the symbol ->.

8

open

deposit

withdraw withdraw
 [amount =
 self.balance]

withdraw
 [amount >
 self.balance]

deposit
[amount >
 -self.balance]

deposit
[amount =
 -self.balance]

empty

creditdebit

deposit
[amount <
 -self.balance]

withdraw
deposit

withdraw
[amount <
 self.balance]

closed

Account

 open
close

Figure 8: Hierarchical statechart for account.

by its own statechart team. In our example, we implement an account team (in
team class AccountSC) for the top-level statechart and an open team (in team
class OpenSC) for the sub-level statechart.

Each statechart is responsible for its own states and transitions. In our
example, the account team is responsible for the transition triggered by the
method close, and the open team for the transitions triggered by the methods
deposit and withdraw.

The top-level statechart manages all sub-level statecharts. Sub-level state-
charts are initialized, activated and deactivated by their enclosing statechart. If
a statechart team is active, the corresponding object under test is in the state
represented by the team. The set of activated teams for an object under test
corresponds to the actual state configuration of this object.

In the example (see Figure 6), the instance variable openState holds the
reference to the sub-statechart team, here the team that is responsible for the
open state. A code fragment of team OpenSC can be found in Figure 9 on page
10. If the expected state is open, the OpenSC team is active, otherwise it is
inactive.

Both roles, the AccountSC statechart object and the OpenSC statechart ob-
ject, are played by the same account object. By calling the method setRole,
the statechart object in AccountSC passes a reference of itself to the statechart
object in OpenSC. The method setRole of team OpenSC expects an Account
object, so the AccountSC statechart object is automatically lowered to its base
Account object. The method setRole lifts the given Account object automati-
cally to its additional role, here the OpenSC statechart object. This is expressed
by the signature of setRole (Account as Statechart asc). Thus two roles

9

public team class OpenSC {

 private Statechart myAccount;

 public OpenSC () {...}

 public void setRole(Account as Statechart asc) {
 myAccount = asc;
 }

/* Role class */
 class Statechart playedBy Account {

 private int state = EMPTY;

 void checkState() {...}

 /* Trigger events */
 public void deposit (int amount) {...}
 public void withdraw (int amount) {...}

 /* Call-in bindings */
 void logMethodCall(int id) <- before void deposit(int amount) 	with {id <- 0};
 void logMethodCall(int id) <- before void withdraw(int amount)	with {id <- 1};
 void logMethodCall(int id) <- before void block()				 with {id <- 2};
 void logMethodCall(int id) <- before void unblock() 				with {id <- 3};
 void logMethodCall(int id) <- before void close() 				with {id <- 4};
 checkState <- after block, unblock, close;
 deposit <- after deposit;
 withdraw <- after withdraw;

 /* Call-out bindings */
 abstract int getBalance();
 getBalance -> getBalance;
 abstract boolean isClosed();
 isClosed -> isClosed;
 abstract boolean isBlocked();
 isBlocked -> isBlocked;
 abstract int getHashCode();
 getHashCode -> hashCode;

 /* Log Methods */
 [...]
 }
}

Figure 9: Open statechart implementation

10

close

block

unblock

closed

blocked

Account

open

deposit

withdraw withdraw
 [amount =
 self.balance]

withdraw
 [amount >
 self.balance]

deposit
[amount >
 -self.balance]

deposit
[amount =
 -self.balance]

H

empty

creditdebit

deposit
[amount <
 -self.balance]

withdraw
deposit

withdraw
[amount <
 self.balance]

Figure 10: Statechart with history connector for account.

can easily share a common base where data flows involve lowering and lifting.
Because the enclosing statechart controls all its sub-statecharts, interlevel

transitions are managed by the enclosing statechart in which the interlevel tran-
sition starts or ends. For incoming transitions, the enclosing statechart deacti-
vates the sub-statechart that is the transition source. For outgoing transitions,
the enclosing statechart activates the sub-statechart that is the transition target.
This includes all in-between levels.

The activation order of the Object Teams runtime system influences the
execution order of call-in bindings. The before methods of the last activated
team are executed first, and the after methods of that team are executed last.
This activation order matches the semantics of UML statecharts, where the
innermost transition is preferred in the case of conflicting events. Other state-
charts semantics like the Harel statecharts [7] are not supported in this simple
way (see also Section 4.5).

4.2 History

Many testing approaches do not consider the history connector (e.g. [1], [2]).
Our approach offers a simple way to implement the history connector. If a state
with a history connector is entered, the sub-state that was active before leaving
the state will also be entered. Since a team holds its state while deactivated,
in particular the expected state of the object under test, the history connector
is implicitly provided by the Object Teams runtime system. Only if we do not

11

close

closed

Account

unblocked

blocked

unblock block

open

blocking

 deposit

withdraw
[not blocked]

withdraw
 [amount =
 self.balance and
 not blocked]

withdraw
 [amount >
 self.balance
 and not blocked]

deposit
[amount >
 -self.balance]

deposit
[amount =
 -self.balance]

empty

creditdebit

deposit
[amount <
 -self.balance]

withdraw
 [not blocked]

deposit

withdraw [amount
 < self.balance
 and not blocked]

payments

Figure 11: Statechart with parallelism for account.

use the history connector do we have to reset the team that implements the
sub-statechart to its initial state when entering a sub-state.

Figure 10 shows a statechart with a history connector for the account. The
statechart has three top-level states, open, closed and blocked. If the account
is blocked and then unblocked, the account returns to the state that it was
in before it was blocked (empty, debit or credit). The events triggered by
the methods block and unblock activate and deactivate the team for the open
state. No more has to be done in terms of the history connector.

4.3 Parallelism

To implement parallel statecharts, we take advantage of another Object Teams
feature. It is possible to bind the same base object to more than one role object
in the same team. The idea is to implement the parallel states (And-states) of
the statechart in one team, with each statechart in its own role.

In our example, shown in Figure 11, the statechart has two parallel states,
the payments state and the blocking state.

The code fragment of the implementation is given in Figure 12 on page 13.
The roles PaymentsStatechart and BlockedStatechart are both played by

12

public team class OpenSC {

 private PaymentsStatechart myPaymentAccount;
 private BlockingStatechart myBlockingAccount;

 public OpenSC () {
 this.activate();	
 }

 public void setRole(Account asc) {
 setPaymentsRole(asc);
 setBlockingRole(asc);
 }

 public void setPaymentsRole(Account as PaymentsStatechart asc) {
 myPaymentAccount = asc;
 }

 public void setBlockingRole(Account as BlockingStatechart asc) {
 myBlockingAccount = asc;

 }
/* Role class */
 class PaymentsStatechart playedBy Account {
 [...]
 }

/* Role class */
 class BlockingStatechart playedBy Account {
 [...]
 }
}

Figure 12: Parallel open statechart implementation

the same account object.
Role lookup7 remains unambiguous because different roles are distinguished

by their role class (see signature of setPaymentsRole and setBlockingRole).

4.4 Nondeterminism

Nondeterminism is another statechart feature supported by our approach. The
statechart specification can be nondeterministic, but the corresponding imple-
mentation under test deterministic.

In situations where more than one transition is enabled to fire, we are faced
with two problems. First, the statechart object does not know which transition
was selected, so we have to store all possible resultant states. Second, the
subsequent state check must consider all possible resultant states.

In Figure 13, in the state debit, for example, a call of method deposit can
lead to the states credit or empty or can trigger a self-transition to the state

7The role lookup mechanism lifts a base object to a suitable role.

13

open

deposit

withdraw withdraw

withdraw

deposit

deposit

empty

creditdebit

deposit
withdraw

deposit

withdraw

Figure 13: Nondeterministic statechart for account.

debit.
In our implementation, we have two extensions for such a situation. First,

we set the instance variable state to an undefined state and store all possible
resultant states in another instance variable, here the states credit, empty and
debit. The method checkState and all update methods are extended, so they
can consider all states in the set of possible states for their calculation. All
states in the set of possible states are simple states, not composite states. We
have to make this restriction to avoid instantiating a team for each possible
composite state. The state is undefined until checkState can reconstruct the
actual state of the object under test. Reconstruction is possible if the set of
possible states filtered by matching the actual state of the object under test to
all possible states is reduced to one state.

This kind of implementation checks that one of the possible paths through
the statechart is correct, but does not know which of the paths the object under
test has taken. Nondeterminism impairs the testability of the implementation
under test. Nondeterminism should be avoided if possible, but it can be handled
by our approach.

4.5 Conclusion

In the previous sections, we have presented our implementation technique for
statecharts. We now discuss the advantages and drawbacks of our approach.

We have implemented our technique in ObjectTeams/Java, a Java extension
to support Object Teams. So far, we have automatically generated teams only
for Java systems, but our approach can be applied to all supported languages,

14

like Ruby Object Teams and Object Teams for C++.
The basis of the code generation is a non-custom format for statecharts. Our

next step is to transform XMI [21] models to our format. This will allow us to
define statechart models with every modeling tool that supports XMI.

The Object Teams programming model offers a simple way to implement
statechart specifications, in particular, history is supported by the runtime ac-
tivation technique, and parallelism by the option of defining two or more roles
in one team for the same object.

Unfortunately, the execution order of activated teams is predefined. Allowing
it to be choosen by the programmer could be helpful. In our approach, the
execution order matches the UML statechart semantics. A simple switch to
other statechart semantics is not yet possible.

The base object can be accessed even by its private methods. So far, however,
base attributes cannot be accessed using call-out bindings. For testing purposes,
we have to enforce an implementation of query methods for all needed attributes.
Later versions of the Object Teams compiler will support call-out bindings to
attributes, disregarding restricted visibility.

We had few problems with the lack of a sophisticated join point language.
For our approach, quantification as in AspectJ [10] is not needed. The approach
would benefit from a join point language that distinguishes between update and
query methods. Such a join point language is offered by the aspect-oriented
language Java Aspect Components (JAC) [9] and planned in later versions of
the Object Teams compiler.

Another advantage is the technique of load-time weaving. The implementa-
tion under test does not have to be recompiled, only the additional code must
be compiled with the Object Teams compiler. Configuration management and
deployment are also facilitated, because the instrumented application does not
need to be stored on disk as a variant of the original system.

The overhead incurred by using teams instead of normal role objects (in
our approach a team instance normally contains only one role instance) may
lead to lower performance of the system under test. Weather aspect-oriented or
conventional, each instrumentation necessarily impacts the performance of the
considered system because of the additional code. Our approach is only suitable
for conformance testing. Performance testing must be done by other tools.

Despite some drawbacks, the advantages of our approach are still significant,
especially the support of Object Teams for statechart features like history. Some
of the drawbacks will be fixed in later versions of the Object Teams compiler.

5 Applicability

This section lists the requirements for the statechart models and the implemen-
tation under test for use with our approach.

For instance, a simple requirement is the matching of names between the
model and the implementation. Names assigned in the statechart model have

15

to be mapped to equivalent names in the implementation under test. Other
approaches like [18] make similar requirements.

We expect that all states in the statechart models are defined based on query
methods of the object under test. The definition does not have to be determin-
istic, but a deterministic definition would improve testability and therefore the
effectiveness of the test (see also Section 4.4).

We assume that query methods have no side-effects because they are used to
report the actual state of the object under test. Our approach excludes query
methods from the test, so so we cannot be sure whether they really do not change
the state of the object under test. We are therefore developing additional test
techniques, also based on Object Teams, to make up for this disadvantage (see
Section 7).

6 Related Work

In [20], the Model-View-Controller paradigm is reported as another domain for
the use of Object Teams. Despite the different domains, this work has many
parallels to our testing technique. In both approaches, roles share a common
base. In our approach, a base object is shared by different statechart objects,
in [20] a model object is shared by different controller and view objects. The
statechart implementation can be regarded as an abstract view of a given system.

There are some approaches that use aspect-oriented techniques for program
instrumentation. Most of them focus on monitoring or testing systems, e.g. [4],
[5], [15], [14] and [2]. An exception is [6], which uses program instrumentation
for reverse engineering.

All of these approaches are based on AspectJ [10]. The advantages of our ap-
proach based on Object Teams result from the characteristics of Object Teams.
AspectJ weaves code statically at compile time. All existing classes have to be
recompiled. Ther is no activation mechanism for aspect code at runtime as in
Object Teams. On the other hand, AspectJ has a complex join point language.
As mentioned in Section 4.5, this kind of join point language is not needed for
our purposes. Base methods can easily be enumerated by the code generator.

A similar aspect-oriented approach for testing based on statechart specifi-
cations is found in [2]. This approach focuses on testing Java components. No
details are given as to how it deals with statechart features like history and
parallelism. The presented example includes only hierarchy, which is flattened
before testing.

Load-time weaving for test instrumentation is presented in [13]. Unlike our
approach, instrumentation is done for code coverage. Generation of the in-
strumentation code is integrated in the load-time weaver. In our approach, we
propose a separation of load-time weaving and code generation, which leads
to aspect-oriented source code. Thus our technique can easily be applied to
other instrumentation techniques or other programming languages. The load-
time weaver remains unchanged, only the code generator has to be replaced or
extended.

16

7 Summary and Outlook

We have presented an implementation technique for statecharts using the Ob-
ject Teams programming model. Aspect-oriented programming supports instru-
mentation for test purposes. The Object Teams programming model also offers
additional features that support a simple strategy for statechart implementa-
tion.

In the future, we wish to extend our approach to test query methods as well.
The test could be extended by first testing query methods and then using the
tested query methods to test update methods, as proposed in [1].

Using the same technique, the validation of pre- and postconditions and
class invariants in OCL can be integrated and combined with our statechart
implementation. The UML 2.0 defines clear semantics for the combination of
OCL constraints and statecharts.

Languages other than Java should be supported by our approach. Of interest
here is the development of an implementation of Object Teams for CORBA
components. Our approach could then be applied to component software.

References

[1] R. V. Binder. Testing Object-Oriented Systems. Object Technology Series.
Addison-Wesley, 2000.

[2] J.-M. Bruel, J. Araújo, A. Moreira, and A. Royer. Using Aspects to Develop
Built-In Tests for Components. In AOSD Modeling with UML Workshop,
6th International Conference on the Unified Modeling Language (UML),
San Francisco, USA, 2003.

[3] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development: The Fusion Method. Prentice
Hall, 1994.

[4] M. Deters and R. K. Cytron. Introduction of Program Instrumentation
using Aspects. In Workshop of Advanced Separation of Concerns in Object-
Oriented Systems, 16th Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), ACM Sigplan Notices,
Tampa, USA, 2001.

[5] R. E. Filman and K. Havelund. Source-Code Instrumentation and Quan-
tification of Events. In Workshop on Foundations of Aspect-Oriented Lan-
guages, 1st International Conference on Aspect-Oriented Software Devel-
opment (AOSD), Enschede, Netherlands, 2002.

[6] T. Gschwind and J. Oberleitner. Improving Dynamic Data Analysis with
Aspect-Oriented Programming. Proceedings of the 7th European Confer-
ence on Software Maintenance and Reengineering (CSMR), 2003.

17

[7] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, (8), 1987.

[8] S. Herrmann. Object Teams: Improving Modularity for Crosscutting Col-
laborations. In Objects, Components, Architectures, Services, and Appli-
cations for a Networked World (Net.ObjectDays Conference), volume 2591
of Lecture Notes In Computer Science, Erfurt, Germany, 2002. Springer-
Verlag.

[9] Jac Homepage. http://jac.objectweb.org/.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP), volume 2072 of
Lecture Notes in Computer Science, Budapest, Hungary, 2001. Springer-
Verlag.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In Proceedings of
the 11th European Conference on Object-Oriented Programming (ECOOP),
volume 1241 of Lecture Notes in Computer Science, Jyväskylä, Finland,
1997. Springer-Verlag.

[12] G. Kniesel. Objects Don’t Migrate: Perspectives on Objects with Roles.
Technical report, Universiät Bonn, Germany, 1996.

[13] G. Kniesel and M. Austermann. CC4J - Code Coverage for Java: A
Load-Time Adaption Success Story. In Component Deployment (CD), vol-
ume 2370 of Lecture Notes in Computer Science, Berlin, Germany, 2002.
Springer-Verlag.

[14] T. Low. Designing, Modelling and Implementing a Toolkit for Aspect-
oriented Tracing (TAST). In Workshop on Aspect-Oriented Modeling with
UML, 1st International Conference on Aspect-Oriented Software Develop-
ment (AOSD), Enschede, Netherlands, 2002.

[15] D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat. Program Instru-
mentation for Debugging and Monitoring with AspectC++. In Proceedings
of The 5th IEEE International Symposium on Object-oriented Real-time
Distributed Computing (ISORC), Crystal City, USA, 2002.

[16] B. Marick. The Craft of Software Testing (Subsystem Testing). Prentice
Hall, 1995.

[17] Object Teams Homepage. http://www.objectteams.org.

[18] M. Richters and M. Gogolla. Aspect-Oriented Monitoring of UML and OCL
Constraints. In AOSD Modeling With UML Workshop, 6th International
Conference on the Unified Modeling Language (UML), San Francisco, USA,
2003.

18

[19] Unified Modeling Language Specifications, Version 2.0. Object Manage-
ment Group (OMG), http://www.uml.org, 2004.

[20] M. Veit and S. Herrmann. Model-View-Controller and Object Teams: A
Perfect Match of Paradigms. In Proceedings of the 2nd International Con-
ference on Aspect-Oriented Software Development (AOSD), Boston, USA,
2003.

[21] XML Metadata Interchange Specification, Version 2.0. Object Management
Group (OMG), http://www.uml.org, 2003.

19

