Translation Polymorphism in Object Teams

Bericht-Nr. 2004/05

Stephan Herrmann
stephan@cs.tu-berlin.de

Christine Hundt
resiz@cs. tu-berlin. de

Katharina Mehner
mehner@cs.tu-berlin.de

ISSN 14369915

Translation Polymorphism in Object Teams

Stephan Herrmann Christine Hundt* Katharina Mehner*
{stephan,resiz,mehner} Qcs.tu-berlin.de

Abstract

In this paper we present the mechanisms of lifting and lowering which
have been incorporated into recent programing languages. In these lan-
guages, lifting and lowering are key features in the integration of static,
class based inheritance and instance based composition with delegation.
We present the embedding of these concepts into our model Object Teams.
We elaborate the details of rules and constraints at the type level, which
give to the approach the capability of non-invasively integrating modules
with different inheritance structures. These rules setup a new kind of sub-
stitutability called translation polymorphism. We show how translation
polymorphism integrates with subtype polymorphism. By generalizing
over the presented techniques we conclude that lifting opens a second
dimension for dispatch in object-oriented languages, be supplementing
method dispatch with instance dispatch.

1 Introduction

The work presented in this paper is based on language research in the areas of
collaboration based development, role modeling, aspect oriented programming,
and declarative software composition.

While integrating findings from these diverse fields, we observe that different
technologies seem to converge towards a new set of mechanisms that directly
relate to the very fundamentals of object-orientation:

e Method dispatch will be supplemented by instance dispatch,
e Subtype polymorphism will be supplemented by translation polymorphism

It is the goal of this paper to present what we mean by instance dispatch and
translation polymorphism.

With these concepts in place, some traditionally controversal topics will be
settled in a constructive way. Given that sharing is a fundamental idea in
object-orientation, we will show that we can smoothly combine static sharing
— as realized by inheritance — with dynamic, instance based sharing — as used
in delegation based languages.

The conceptual glue that allows us to integrate concepts from different fields
of research is a special kind of module called team. The concept of teams
combines the following desirable properties:

*This work has been supported by the German Federal Ministry for Education and Re-
search under the grant 01ISC04A (Project TOPPrax).

e Teams realize views that group sets of interacting classes and objects.
e Teams define the context for role objects regulating the scope of roles.
e Teams serve as the unit for dynamic aspect activation.

e Teams may be used as declarative module connectors.

1.1 Focus of this paper

After an introduction to Object Teams this paper will focus on what we call
dynamic instance dispatch, which is a mechanism for transparently navigating
a graph of instances that delegate to one another. Sect. 1.2 will motivate this
mechanism by a brief analysis of potential problems of approaches that use
instance based software composition and delegation.

At this level, we will present two mechanisms called lifting and lowering and
answer the following questions:

e When should instance dispatch be triggered?
e What context information is needed to perform the dispatch?
e When should roles (atomic instances involved in delegation) be created?

The body of this paper will elaborate precise rules for issues related to typing,
answering these questions:

e How can the most suitable role type be found for on-demand role creation?
e How can type safety be ensured statically?

e How can mappings between inheritance hierarchies with different struc-
tures be supported?

Motivations for these questions will be given as we go along.

Finally the new concepts will be related to traditional methods dispatch.
This results in an integrated view of method dispatch which includes solutions
to some issues of polymorphism that have been reported regarding languages
for aspect-oriented programming.

The concepts presented in this paper have been developed as part of the
language ObjectTeams/Java, for which tool support (a compiler, a run-time
environment, and an integrated development environment) is being finalized
and consolidated at the time of this writing.

To-date a number of examples have been programmed in this language and
first industrial application starts right now within the funded project TOPPrax.

Before presenting our contributions, we first re-investigate the controversy
of static vs. dynamic sharing using inheritance or delegation, respectively. We
identify four issues that should be settled for a smooth integration of both
concepts, paving the road for a synergetic combination of language capabilities.

), m)_ s
° parent ° parent

self.o() self.o()
forwarding delegation

Instances 01 and 02 share one implementation of m.
Calls to m on o1 are dispatched to 02.
Self calls on 02 (within a control flow of 01):

with forwarding: remain at 02.

with true delegation: dispatch back to o1.

Figure 1: Forwarding/delegating to a parent instance

1.2 Sharing and dispatching revisited

In the early days of object-orientation, sharing and dispatching have been iden-
tified as fundamental concepts for structuring programs [27, 34]. Sharing is used
for extracting common features to a single non-redundant location. Dispatch-
ing is then applied to define the inter-operation between shared and un-shared
parts. The most illustrative example is the Template Method design pattern:
a template method is implemented in a general class and calls other methods
(“hook” methods) that have to be provided by more specific classes. All specific
classes share the implementation of the template method. In order to invoke
the suitable hook method dynamic dispatch has to be applied.

Two mechanisms have been identified that enable this kind of sharing: in-
heritance and delegation. While the mainstream has opted for the former, static
approach, the interest in more dynamic approaches using some form of delega-
tion has never ceased.

In languages that support delegation, compound objects can dynamically
be assembled from atomic instances, which delegate to one-another. We see
three reasons why instance based composition using delegation is desirable in
object-oriented languages.

1. Assembling an object as a chain of delegating instances easily provides
combinational flexibility comparable only to mixin-based approaches. Both
approaches allow to freely combine the behavior of different classes.

2. Composition can be deferred until run-time with the advantages of further
flexibility. This dimension of flexibility refers to the fact, that type com-
binations need not be fixed at compile time. Even after instance creation,
new facets (delegating instances) can be added at will.

3. Instance based structures allow for multiplicities that cannot be achieved
using purely static approaches. There is no limit on how many instances
share a common parent instance to which they delegate certain messages.

The abundance of design patterns that apply “delegation”! demonstrates
that static sharing is not sufficient in practical software development. To some
extent these patterns complicate designs by adding infrastructural overhead and
introducing new trade-offs. Thus, some pattern based solutions are far from
optimal and call for more fundamental support for instance based sharing. A
particular problem from which many of the considered design patterns suffer has
been described as “object schizophrenia” [25, 26]. From the discussion about
object schizophrenia, we draw the conclusion that the question whether two
parts of a compound object share a common identity depends on the context.
Thus object schizophrenia can only be remedied effectively, if a language has
explicit support for views. We will come back to this issue after introducing our
concept of teams in Sect. 2.1.

Given that instance based composition helps to solve practical problems,
four issues have to be settled:

Issue (a). How does method overriding work for compound objects? Most au-
thors agree that delegation should allow an object to override methods
of its parent(s), which requires late binding of self. In this setting,
messages must be sent to the more specific instance in order for its
method overrides to be effective. More advanced approaches also pro-
vide means, by which overrides can adapt an instance globally, i.e.,
also for clients that access the shared instance (parent) directly (see,
e.g., “constituent methods” in [8].)

Issue (b). How is the set of instances, which contribute to a compound object,
created? It is usually not satisfactory if the creation and linking
of atomic instances has to be done manually, since this significantly
bloats the program.

Issue (¢). How does navigation along the references between atomic instances
work? One direction is usually supported by an explicit “parent” link,
which also serves as the basis for delegation. However, navigating
from a parent to its children is non-trivial. Firstly, the parent link
usually has no reverse link, i.e., the parent doesn’t explicitly know
about its children. Secondly, there may be more than one child for a
given parent.

Issue (d). How is typing affected by delegation? In order to use delegation in
place of class based inheritance, a child instance may be considered
to conform to the type of each of its parents.

In this paper we present our solution to the above issues. The Object Teams
programming model combines class based inheritance with a variant of role
objects that use forwarding and delegation for sharing. By integrating static
and dynamic sharing together with a new module concept called teams, we
combine and transcend the best of both worlds.

We will shortly introduce two mechanisms called lifting and lowering, which
address issue (b) and issue (c) above. Sect. 4 will show details of overriding and
dynamic method dispatch (issue (a)).

ITechnically, we prefer the notion forwarding for the style of message passing used in
standard design patterns. Unfortunately “delegation” has been introduced in [6], although
true delegation would require the option of overriding using late binding of self (see Fig. 1).

Many papers on delegation focus on typing (issue (d)). In Object Teams
this non-trivial discussion is essentially avoided by restricting substitutability:
roles do not directly conform to the type of their base classes. With respect
to role-base pairs, regular subtype polymorphism is replaced by a new kind
of implicit type-safe conversion, called translation polymorphism. Translation
polymorphism in turn is based on lifting and lowering. The remaining questions
regarding type-safety will be discussed in Sect. 3.3.

Structure of this paper.

Sect. 2 will set the stage by showing how Object Teams extend the fundamental
object oriented concepts for sharing and dispatching. Here the terminology of
Object Teams will be introduced and illustrated by a running example. Sect. 3
will present the algorithm for “smart lifting” which is the sophisticated mecha-
nism behind translation polymorphism. Sect. 4 shows how method dispatch in-
tegrates into this setting, presenting a solution to the problem of aspectual poly-
morphism. Sect. 5 interprets the concepts and mechanisms as two-dimensional
dispatch, which is a rich, context aware concept for associating the most suitable
implementation to a given method call. We will conclude with a discussion of
related work (Sect. 6) and a look at future work (Sect. 7.1).

2 Object Teams

In order to set the stage for the translation polymorphism and its mechanism
of smart lifting, we briefly present the Object Teams model. Sect. 2.2 will
introduce a running example for this section. Sect. 2.3 associates the lifting and
lowering translations with dataflows that cross the boundary of a team. Here
you will find a definition of the term “translation polymorphism”. Sect. 2.4
describes the problems which arise if independently developed modules are to
be integrated using role-base relations. Finally, smart lifting is introduced as
the answer to such structural mismatches.

2.1 Terminology and Concepts

As a brief introduction to Object Teams we will give definitions for its central
notions and relate these to the concepts discussed in Sect. 1.2.

2.1.1 Kinds of classes
Object Teams discriminate different kinds of classes which relate to each other.

Definition 1 (Team)
A team is a container for a set of interacting roles. Each inner class of a team
is automatically a role class.

Definition 2 (Role)
A role class is an inner class of a team. FEach role instance is furthermore
contained in a team instance. A role class may be bound or unbound.

Definition 3 (Bound Role)

A bound role class has a playedBy declaration specifying a base class, such that
each role instance will be linked to a base instance of that class. In Object
Teams the role-base link is immutable once established.

When searching a role for b2,
r3 is uniquely identified by

- team instance t1 and

- role type R3

Figure 2: Role multiplicities and identification

Definition 4 (Base)

Any class can act as a base class, which simply means that the class appears
in the playedBy clause of a role. An instance can be the base of several role
instances simultaneously.

The role-base relation can be identified with instance based sharing: any
number of role instances can share a common base instance. The invisible base
link directly corresponds to the parent link in other languages.

2.1.2 Mechanisms for navigation

The fundamental mechanisms to be presented in this paper are lifting and low-
ering on which translation polymorphism is based.

Definition 5 (Lifting)

Navigating from a base instance to a role instance is called lifting. This may
involve creation of a role instance and has to consider the multiplicities of the
role-base binding.

Definition 6 (Lowering)

This operation is the inverse of lifting, i.e., navigating from a role instance to
its base instance. It is trivial because each role instance has a link to its base
instance. Yet, lowering is supported at the language level, since Object Teams
for conceptual reasons don’t give explicit access to the base link.

Given the multiplicities of the role-base binding, lifting is only well-defined
if additional context information is given (see Fig. 2).

Definition 7 (Context of Lifting)
Lifting takes a base instance, must specify the expected role type and must
provide a team instance.

Fig. 2 shows two different kinds of sharing: roles r4 and r6 share a common
base b3, but within each team instance (t1 or t2) there is only one role for b3.
This way each team instance realizes a view on a potentially shared set of base
instance. Sharing between different roles of the same team instance (r2 and r3
in the figure) is less common, but can be disambiguated by the types of those
roles (R2 vs. R3).

2.1.3 Method bindings

The language ensures that the context for lifting is always provided. In order
to see how this is done, two integration mechanisms need to be shown, both of
which depend on an existing role-base relation using a playedBy declaration.

Definition 8 (Callout)
A role class may declare by callout method bindings that specific messages shall
automatically be forwarded to the linked base instance.

Definition 9 (Callin)

By a callin method binding a role class may declare method interception in
the vein of advice-weaving as it is used in aspect-oriented programming. A
callin binding has to provide one of the combinators before, after or replace
specifying how to compose the role method into one or more existing methods
of its base class.

Both kinds of method bindings define the inter-operation between a role
and its base. In a program that uses callout binding only, method dispatch for
role instances is mere forwarding. Overriding can be added by callin replace
bindings. Combining callout and callin bindings we achieve true delegation.
Note, that overriding must be declared explicitly. Thus, a role method which
happens to have the same name as an existing base method will not override
that method, unless a callin replace binding is explicitly given. Conversely, a
role method need not have the same name as the base method which it overrides.
These rules improve the independence between roles and bases.

2.1.4 Team activation

Teams realize the concept of dynamic aspects. For this purpose it is a most
useful feature, to dynamically activate or deactivate individual team instances.

Definition 10 (Team activation)

In order for any callin binding to be effective a corresponding team instance has

to be activated. Activation may occur by invoking method activate() on the

team instance or in a more controled fashion by a new block-construct
within(teamlInstance){ //statements }.

Assigning aspect activation to the team level has the advantage of better
modularity and consistent activation of a group of interacting roles in only one
step.

2.1.5 Role life-cycle

It has been said that lifting may need to create a role instance. In this we
follow the goal that developers should not be required to manually handle role
creation (although explicit role creation is still possible). On the other hand
identity and state of role instances should persist across lowering and lifting.
Both goals are reconciled by simply storing a map of base and role instances
within each team instance. Lifting first tries to retrieve an existing role from
this map. Only if this failed a new role is created and entered into the map. As
a result, on-demand role creation is fully transparent to the programmer.

Under certain circumstances several base-role maps are needed per team.
The exact rules will be given in Sect. 3.2.

To complete the role life-cycle, we would like to add an option of canceling
existing roles. We will discuss problems of this task in Sect. 7.1.

2.2 Example — UML Editor

The first case study for Object Teams has demonstrated that teams are very well
suited for implementing in the Model-View-Controller style [33]. As a running
example in this section we elaborate some details of a repository based UML
editor in the vein of PIROL [11].

Neglecting the distributed architecture of [11] we still identify two modules:
the shared model (“repository”) — in this case a meta model of object oriented
structures — and a diagram editor.

As a starting point we consider only two classes from the model: Class and
Relation, the latter generalizing over associations and inheritance. A minimal
set of methods suffices to demonstrate the mechanisms.

package model;
class Class
{
void addRelation (Relation rel) { ... }
Relation getRelToClass (Class other) { ... }
}
class Relation
{
Class getClassl () { ... }
Class getClass2 () { ... }
}

Consider next an editor for UML class diagrams, where each Class is to
be represented by a ClassFig and each Relation is shown by a Connection,
i.e., a (possibly decorated) line between two class figures. Considering that each
ClassFig and Connection adds layout information to the corresponding model
element, it is natural to design the graphical entities as roles of corresponding
model entities.

public team class ClassDiagram

{

class ClassFig playedBy model. Class

{

abstract
Connection getConnection(ClassFig other);
void addConnection(Connection con)

(...
-

class Connection playedBy model. Relation

{

abstract ClassFig getStartFig();
abstract ClassFig getEndFig();

}
}

While the graphical information is local to the ClassDiagram team, classes
in this team also need access to the structural information defined by their base
classes. This is sketched by the abstract methods getConnection, getStartFig
and getEndFig. These methods are declared abstract, because their role classes
provide no implementation, but implementation is to be bound by callout method
bindings. Class ClassFig does however provide an implementation for add-
Connection, by which a new line is drawn in the diagram. One potential use
of this method is for updating the view when the model has changed. What is
missing at this level is just the trigger for invoking addConnection.

At the method level integration of both modules is defined by the following
method bindings:

public team class ClassDiagram
{
class ClassFig playedBy model. Class
{
getConnection —> getRelToClass
addConnection <— after addRelation
}
class Connection playedBy model. Relation
{
getStartFig —> getClassl
getEndFig —> getClass?2
}
}

In the syntax of ObjectTeams/Java the right arrow (->) denotes a callout
binding and the left arrow (<-) a callin binding, which must be further speci-
fied with a combinator, here: after. The callout bindings setup a forwarding
dispatch as discussed above. The callin binding using after is a variant of
overriding, which does not replace the given base method, but only adds addi-
tional behaviour at the end of its execution. Thus, callin bindings with before
or after combinators can be interpreted as a purely additive mechanism for

inserting triggers into base methods.

For all four bindings presented so far, method signatures are “similar” enough
for binding methods without signature adjustments. The language also supports
declarative parameter mappings, which are not in the scope of this paper. By
“similar” we mean that signatures can be matched given a few implicit transla-
tions which will be investigated next.

2.3 Dataflows

The idea behind teams as context for roles is illustrated by the concept of views:
Within a team, base instances are seen as decorated by role instances; outside
the team, roles are usually not visible. This kind of encapsulation is the key to
improved modularity, where the worlds of base instances and role instances are
self contained domains with very little coupling. This understanding of views
gives the background for defining the points within a program where lifting and
lowering take place.

Normally, data flows between a team and the outside are declared by callout
and callin method bindings. Here is an intuitive rule for the translations to take
place:

Any role instance being passed from a team to the outside is implic-
itly lowered to yield the linked base instance.?

When passing a base instance into a team that may have a role
for that particular base, the base instance is implicitly lifted to its
corresponding role instance.?

Of course method signatures have to correspond to the types involved in
such data flows. As an example for lowering consider this binding (this time
shown in the optional long form):

Connection getConnection(ClassFig other)
—> Relation getRelToClass(Class other)

The argument ClassFig other is implicitly lowered to its base of type Class
thus matching the signature of the base method. Lifting can be shown at the
same binding. The return value being declared of type Relation is implicitly
lifted to its role Connection, which again agrees with the expected type, here
the return type of getConnection.

Using these translations, it is possible to implement both worlds — the
diagram team and the model package — using their specific abstractions only.
Method bodies of the team and its roles need not (and should not) mention any
base classes. Nor are role classes mentioned in the base package.

When considering two directions of method bindings (callout and callin) and
three positions (call target, argument, return value), the following translations
can occur.

| call target | argument | return value
lower lower lift

callout

callin lift lift lower

2This rule does not cover the case of externalized roles, i.e., roles which are explicitly passed
to the outside. Externalized roles are not subject of this paper.

3Base instances for which no role type exists are passed unchanged. The same holds for
basic type values, such as int and char.

10

Two more places of translation are supported by the language, which will
be shown using the example of the UML editor.

First, there should be means to add a class to a diagram for which no figure
exists yet. This operation will be called from outside the team where instances
of Class are at hand. However, the body of that operation requires a ClassFig
to be inserted into the drawing. In order to specify that a base instance should
be lifted when being passed into a team-level method the following syntax is
introduced:

public team class ClassDiagram

{
void addClass (Class as ClassFig cls)

(...
}

The new type declaration Class as ClassFig requires clients of this method
to provide an instance of Class. Inside the method, however, the value is typed
to ClassFig. The required lifting translation is inserted by the compiler. Again
the syntax supports a clear separation of scopes dealing with bases only or roles
only. Once some initial roles are available within a team, other roles can be
retrieved by callout-bound methods like getConnection. So from an initial role
the team may retrieve a graph of role instances as a view of a graph of base
instance.

Secondly, implicit lowering can be used anywhere in a program. Because
lowering is a trivial translation a role value can be attached to any base-typed
identifier, meaning that the base instance is extracted prior to attachment. So
the following code is type correct:

public team class ClassDiagram

{
ClassFig rootClassFig;
Class getRootClass ()
{
return rootClassFig;
}
}

For programmers this feels just like subtype-polymorphism: assignments (or
attachments of method arguments, or return statements) may drop static type
information. Reverting this information requires some efforts (lifting or down-
casts) which also have the possibility of failing at run-time, while up-casts and
lowering will never fail. This analogy should not be surprising, considering
that the role-base relation is a specific form of instance-based inheritance by
delegation.

Completing the analogy to subtype polymorphism we can now define the
notion “translation polymorphism”.

Definition 11 (Translation Polymorphism)
Translation polymorphism defines the rules by which role values can be substi-
tuted for base types and vice versa. In addition to switching between different
static type information, translation polymorphism also involves the execution
of the translation operations lifting or lowering.

11

ClassFig Tool| playedBy» Class Repository
features? /ModifiersFig-w features?
——
FeatureFig «playedBy» | _| Feature
F\ JAN K
MethodFig Splayedty Method
; : «playedBy> ;
AttributeFig Attribute

Figure 3: Mapping different hierarchies by playedBy

The primary design goal behind translation polymorphism was, to construct
a language that makes navigating between bases and roles as convenient as
changing views using regular subtype polymorphism.

Similar to subtype polymorphism, typing rules must be defined to ensure
that lifting and lowering produce no unexpected runtime errors. Lifting is more
challenging than all other conversions, since it may need to create a new role
instance or select between different role instances of a given base instance. The
next section will illustrate these issues with our running example. Thereby
the concept of lifting will be refined to what we call “smart lifting”. Sect. 3.2
presents the algorithm implementing smart lifting.

2.4 Mapping hierarchies

The preceding discussion has focussed on dispatching between role and base
instances, neglecting the possibilities, that the classes involved may be part of
arbitrary inheritance hierarchies.

However, our goal is to combine the best of the worlds of static and dynamic
sharing — inheritance and delegation. As an illustration for the kind of ques-
tions that remain we augment our running example with some details of classes,
namely attributes and methods (see Fig. 3).

At the repository side we introduce an abstract class Feature with two sub-
classes Attribute and Method. The same structure is given at the tool side by
FeatureFig, AttributeFig and MethodFig. Each pair of corresponding classes
is connected by a playedBy clause in the role class. Now, let’s assume a function

FeatureFig[] getFeatures()

in the role class ClassFig. This method is to be bound by callout to a corre-
sponding repository method

Feature[] getFeatures()

Obviously, each element in the resulting array should be lifted from Feature
to FeatureFig. However, both classes are abstract and no roles of exactly this
type can be created.

By intuition it is evident that each concrete object in the base array is either
an Attribute or a Method and should thus be lifted to one of the concrete role

12

Repository

no common
super-type
MethodFig | | PlaygdBy> @

Figure 4: Variant: introducing a super-type

Tool
FeatureFig

AttributeFig

classes AttributeFig or MethodFig. This simple example demonstrates, that
lifting must pay attention to the dynamic type of the base instance to be lifted.
Only by looking at that type, a proper role type can be selected.

Definition 12 (Smart Lifting)
Smart lifting is a lifting translation that considers the dynamic type of a base
instance in order to return a role instance of the most suitable role type.

Consider next a class ModifiersFig, which is used by the tool for displaying
feature modifiers (public, synchronized ...) by a set of icons. This abstraction
has no corresponding class in the repository. Since at the repository level, the
information of modifiers is stored in Feature objects, ModifiersFig are mod-
elled as a view of Features. Navigating from a Feature to its ModifiersFig
means to navigate from one role to another regarding the same base object. This
requires the lifting operation to distinguish roles based on the statically required
role type. The same Feature object can be lifted to a sub-class of FeatureFig
or to a ModifiersFig object. If static typing is strong enough this distinction
is unambiguous and happens without further intervention by the programmer.

Finally, the given mapping still works if the repository model lacks a type
Feature. A missing super-type may be introduced as a (possibly abstract)
role which is not bound to a specific base class. Looking at Fig. 4 we see
two incommensurable classes Attribute and Method. Only in their mapping
to AttributeFig and MethodFig the generalization FeatureFig is introduced.
Now the tool can polymorphically handle FeatureFigs of both types, while the
repository remains unchanged. Thus, translation polymorphism introduces new
options of using sub-type polymorphism in places where it has not been planned
for.

As we have already pointed out in [13], the capabilities to map mismatching
structures is a key feature for integrating independently developed components.
Mechanisms in the vein of our lifting translation (sometimes called wrapper
recycling) have been used for PIROL [11, 13], PCA [22], their implementation
JADE [10], LAC [12] (a prototype for Object Teams) and Caesar [21].

Still, to-date neither the central role of lifting in the design of these languages,
nor its precise rules have been worked out. It is the goal of the following section
to define smart lifting such that type-safety is guaranteed. In doing so, we had
the choice of defining rather conservative rules, that would provide unconditional
type-safety but work only for simple situations of hierarchy mappings. At the
other extreme, all checks could have been postponed until run-time in order to
allow arbitrary structures to be mapped with greatest flexibility.

13

Our solution is a combination of strict static type safety and some more
flexible options that combine compiler warnings and run-time checks as the
safest-possible way to deal with really difficult program structures. Sect. 3.2
defines the constraints and the algorithm for standard situations. Sect. 3.3 will
elaborate corner cases.

3 Smart Lifting Defined

The previous section has shown the central role that the lifting translation
may play in a language design that combines inheritance and delegation. We
have shown the embedding of lifting and lowering into a language the support
modules for collaborating roles, in our case: teams. We have finally given some
examples, where the role type to be used for lifting could only be determined at
run-time using the dynamic type of a base instance. Thereby we refine lifting to
“smart lifting”, which allows to bridge mismatches between different inheritance
hierarchies of base and role classes.
In this section we will present the rules for role-base bindings and lifting.

3.1 Concepts

As we have seen, inheritance and subtype polymorphism have significant impact
on the lifting translation. We will now define the concepts and algorithm of
smart lifting. Later we will come back to the different stages and analyze those
corner cases that need special treatment.

Basic setting. Fundamental to lifting is the existence of role-base bind-
ings at the class level. Binding a role class to a base class will be denoted as
playedBy(R)=B. In that case R is a bound role (cf. Sect. 2.1.1, definition 3).
Each lifting translation involves three static types (cf. Sect. 2.1.2, definition 7):
A base class B, a team class T and a role class R, where R is an element of T.
In addition to the static typing of lifting, at runtime two instances b and t are
given whose dynamic types may be subtypes of the above, i.e., Bgyn, and Tqyn.
The result of lifting is an instance r of dynamic type Rgy,, which must be shown
to conform to the required type R.

Lift methods. The Object Teams compiler generates lift methods as meth-
ods of each team which has bound roles. One such method is generated for each
bound role type R. Given that R is bound to B, this method must be capable to
handle base objects of all sub-classes of B. For a given triplet (T, B, R) the lift
method in T has the following signature

R liftTo$R(B b).
This leads us to our first constraint:

Rule 1 (bindings exists)
When lifting B to R with respect to team T, there must be a role R1€T, R1CR,
and a base class B1JB, such that playedBy(R1) = B1.

For illustration of this rule see Fig. 5. The rule states, that there must be a
path from B to R which may only involve up-casts and lifting in order to translate
an instance of class B to an instance of type R.

Lifting is always performed on behalf of a team instance. Thus, dynamic
binding of the team is performed first. Throughout the lifting process, only

14

R1

Figure 5: Lifting in the presence of inheritance

the dynamic type Tqy, is of interest. This leaves as an obligation to show that
the role r retrieved by t is conform to expectations based on the static type T,
which is mainly an issue of the family polymorphism involved (see 3.4).

Role hierarchies. All role classes of a team are partitioned into disjoint role
hierarchies spanned by a set of root roles, which are bound role classes Ry, that
do not inherit from another bound role class. These hierarchies are completely
independent with respect to lifting. Binding a base type to a hierarchy Ri,,.¢
does not affect any other hierarchy R2,.,,:. The same holds on the instance level:
lifting a base object b to hierarchy Ri,,,; does not affect any other hierarchy
R2root~

Role caches. Since the lifting/lowering translation shall preserve state, role
objects must be cached. Each team instance contains one role cache for each
of its role hierarchies. Each cache is a mapping of base objects (keys) to role
objects (values).

The need for separate caches for separate role hierarchies can be illustrated
by the example of class ModifiersFig above. In the given setting two caches
will be used, one for FeatureFig and one for ModifiersFig. When a Feature is
lifted to type FeatureFig the first cache is used, while lifting to ModifiersFig
uses the second cache. It is thus ensured, that two different roles for the same
base object don’t interfere at the level of role caching.

3.2 Algorithm

Given the above concepts and definitions, for each triplet (T,B,R) a lift method
inT

R1 liftTo$R1(B1 b)
is selected whose realization is defined below.

Step 1 (lift method selection)

According to Rule 1 at least one appropriate pair (B1,R1) exists. From these
pairs the most general R1 selects the lift method to use. Given R1 a lift method
is uniquely identified since a team contains exactly one lift method for each
bound role.

If no lift method is found, this is due to a missing role-base binding, thus the
requested lifting is not possible, resulting in a compile-time error. The following
steps define the semantics of a lift method.

15

Step 2 (cache lookup)

The appropriate cache is determined by static lookup of the root role R, of
R. Using b as the key, a cached role req.p. is retrieved from the cache of Ryt .
If regene Is null proceed with the next step. If Tegene is not null try to cast it
to R and return it. If casting fails, throw a WrongRoleException.

The exception case will be discussed in Sect. 3.3.1.

If all goes well, cache lookup will retrieve a role object created by a previous
lifting translation or by explicit role creation. While implicit role creation due
to lifting is by far the normal case with Object Teams, the latter case requires
a further constraint:

Rule 2 (explicit role creation)

Explicitly creating an instance of a bound role class, i.e., creation other than
via lifting translation, must ensure proper setup of a corresponding base object
and registration in the corresponding role cache.

In ObjectTeams/Java this rule is ensured by a constraint on role construc-
tors and by generating one additional statement into these constructors, which
inserts the role-base pair into the corresponding role cache.

Rule 3 (role constructors)

Each client constructor of a bound role class must as its first call contain a
base constructor invocation, which has the syntax base(args). Alternatively,
self-calls are allowed, provided they eventually lead to a base constructor call.

The given base constructor syntax has the effect of creating a base object
passing the arguments args to its constructor. A link to the base object is
internally stored in the role object. Inserting the role-base pair into the role
cache happens immediately after base object creation.

These rules ensure that explicitly created roles (a) have a valid base link and
(b) are available in the corresponding cache.

In case cache-lookup finds no role object, a fresh role has to be created.
Selection of the actual role class is based on some static analysis, which is
performed by the compiler for each team class.

Step 3 (role hierarchy analysis)

The hierarchy of sub-roles of R in T is statically analyzed in order to create a
unique mapping from base classes to role classes with respect to the considered
team class. This analysis inspects all sub-roles of R performing (1) elimination
of irrelevant roles and (2) base class folding.

Step 4 (elimination of irrelevant roles)
When traversing down the role hierarchy, a super-role R1 of role R2 is discarded
iff R1 is not bound to a base class or bound to the same base class as R2.

If a role class has no playedBy clause, it inherits this binding from its super-
class, if such a binding is present there. The above elimination achieves that
more specific bindings override less specific ones. This helps to prevent the
problem of mismatching roles (see 3.3.1) for common situations.

16

Step 5 (base class folding)

From all roles that passed Step 4 the bound base classes are inspected. If one
base class is bound by more than one role in the set, all roles bound to this class
are discarded from the set of lift candidates and the compiler issues a warning
“Potential ambiguity in role binding”.

The compiler warning signals that the program may or may not fail at run-
time. Ambiguities will be discussed in detail in Sect. 3.3. A program that
compiles without such warnings is guaranteed to contain only safe liftings.

Step 6 (conditional role creation)

Given the base-to-role mapping from the previous steps, and given the dynamic
type of the base argument By, from all base classes contained in the mapping
the most specific super class of By, is chosen. By the given base-to-role mapping
this base class Bay, determines the role class to be used. The lift method finally
creates a role object of the determined role class.

Step 7 (role setup)

Roles are created using a generated constructor that does nothing but establish
the (invisible) role-base link. If a method initializeRole() is present in the
role class, it is invoked. This method may access the enclosing team and the
linked base object. If in this process any exception is thrown, lifting aborts
throwing a LiftingFailedException. If no exception occurs, the initialized
role object is entered into the role cache along with its base object as the key.

The impact of LiftingFailedExceptions will be discussed in Sect. 3.3.3
below. In order to ensure consistency regarding the role-base link binding
monotony is required as defined by the following rule.

Rule 4 (binding monotony)

A role class which inherits a playedBy B1 declaration from its super-class, may
redefine this binding only to bind to a more specific base class, i.e., a sub-class
of B1.

Binding monotony ensures that no super-type of the concrete role R1 expects
a base object of a more specific type than the declared base class of R1. Lifting
does not strictly require this rule, since a violation would simply mean that a
defined role will never be instantiated. The rule is introduced for the sake of
method bindings that might otherwise break.

Note, that binding monotony explicitly admits the case, that the role-base
link can be redefined covariantly, which is exploited by the above algorithm.
Considering that this link is immutable, covariance introduces no problems here.

Example of smart lifting.

The effect of the above algorithm regarding different role and base hierarchies
is demonstrated by the example in Fig. 6.

Given that statically type B3 is to be lifted to role R1, given furthermore,
that the dynamic type of the base object is B5, the lift method 1iftTo$R2 will
be called and return an instance of R4.

Here are the details: Step 1 using Rule 1 on B3 and R1 finds the pairs (R2,B2)
and (R3,B3). The more general role R2 selects the lift method to

R2 liftTo$R2(B2 b)

17

statically
requested

liftmethod
chosen

iven
statically

actual
roletype
given at
run-time

Figure 6: Mapping two hierarchies

Cache lookup (Step 2) uses the cache for R1. Let’s assume, no instance is
recorded yet by the key of b. Thus, hierarchy analysis (Step 3) is required for
all sub-roles of R1. During this analysis, Step 4 discards the role R3, because
its base-to-role binding is overridden by the direct sub-role R4. This leaves the
pairs (R2,B2), (RX,BX), (R4,B3), and (R6,B6) as candidates. Step 5 does not
change the selection in the given setting, since no base class appears more than
once. Inspecting the dynamic type in Step 6 finds the classes BX and B6 not
to be a super-type of B5. Instead, search moves “up” from B5 until it finds
B3 (which is the most specific from the remaining set (B2,B3)) and selects the
bound role class R4. An instance of R4 is created, linked to b and entered into
the cache associated to R1, the root role of this hierarchy (Step 7).

R4 is the most specific type that can result from lifting b of dynamic type B5
to anything below R1. Lifting the same object to any other sub-role of R1 will
always yield an instance of type R4. This ensures that in a program without
statically detected ambiguities (see next section) lifting a given base object to
any member of a given role-hierarchy will always yield a role of the same type.
Thus, a cache hit within the cache for the common super-role will always find
an instance that is conform to the role type required by the lift method.

For teaching the language the following more intuitive rule can be used to
describe how the class structure is traversed to find the most suitable role class:

1. Move upwards in the base hierarchy, until you find a base class to which
a role from the desired hierarchy is bound.

2. Switch over to the corresponding role class containing the given playedBy
binding.

3. Move down in the role hierarchy, as long as no more specific playedBy
binding is encountered.

Of course, this rule of thumb assumes bindings without any form of ambiguities.
These will be discussed next.

3.3 Corner Cases

Three kinds of problems could occur with lifting: problems related to ambigui-
ties, abstract roles, and exceptions thrown by the hook method initializeRole.

18

«playedBy»

R1 «Elazede» N

>
R2 «playedBy»

Figure 7: Ambiguous role binding

3.3.1 Levels of Ambiguities

Step 5 identified a situation of potential ambiguity which results in a compile-
time warning. Note, that this warning is independent of any lifting requests in
the program. As an example consider Fig. 7: the pairs (R1,B1) and (R2,B1)
are discarded in the analysis for role RO (Step 5). Note, that ambiguity only
exists regarding the role type RO. A request to lift B1 to R1 (or R2) is still
unambiguous. Removing RO altogether eliminates the potential ambiguity.

If the program statically requests lifting of a base class that was discarded in
Step 5 because several roles are bound to the same base the program is illegal,
signaled by a compile-time error. This situation corresponds to an attempt to
lift base B1 to type RO in the figure. It could have been produced by the following
method signature:

void meth(B1 as RO o);
We call this level of ambiguity definite ambiguity.

If a lifting request is encountered at run-time for the dynamic type Bgyn
that has been discarded in Step 5, this is an actual ambiguity which results in
a LiftingFailedException to be thrown. Regarding Fig. 7 this situation can
be produced by a legal method

void meth(BO as RO o);
if this method is invoked with a value of dynamic type B1.

Another result of potential ambiguity may be that a role object is retrieved
from the cache that is not conform to the expected type (see Step 2). This may
happen in a program containing lifting to both classes R1 and R2 as in

void methl(Bl as Rl o);
void meth2(Bl as R2 o);

If both methods are called in sequence passing the same instance of B1, the
second invocation will find a mismatching role (of type R1) in the cache, causing
a WrongRoleException to be thrown.

3.3.2 Abstract roles

Of course, lifting would also fail if it tried to instantiate an abstract role. For
that purpose the notion relevant role is coined to denote those roles for which
abstractness matters. A simple rule now ensures that lifting will not fail due to
an abstract role:

Rule 5 (abstract role)
If any relevant role is abstract, the enclosing team must be marked abstract,
too.

19

Surely, all roles identified as irrelevant in step 4 may be abstract without
further consequences: they will not be instantiated by lifting.

It may occur frequently, that an abstract base class B is bound to an abstract
role class R, which should normally cause no problem. Proving irrelevance of
such role-base pair would however require to show, that every instantiable sub-
type of B has a binding to a non-abstract role. Even if this condition is met
by a program at a given point in time, merely adding a new sub-class of B,
which has no specific role binding, would break safety of the lifting operation.
Therefore, all that can be done under the open-world assumption of Java, is to
report as a warning, if an abstract but possibly relevant role-base pair is defined
by a non-abstract team. It is the responsibility of the developer, to ensure
that an instance of the abstract role is not needed. Otherwise, at run-time a
LiftingFailedException will signal the problem.

Again it is a matter of style to remain within the statically proven safety of
lifting or to accept compiler warnings for the risk of a run-time exception.

3.3.3 Exceptions during Lifting

Lifting also fails if the hook method initializeRole throws a LiftingFailedException.
If lifting was invoked due to a callin binding, invocation of the role method is

silently aborted and execution continues as if the team was inactive. In all other

cases, lifting was triggered by a team or one of its roles. These call sites have

a chance to either catch the LiftingFailedException or else propagate the
exception.

3.4 Lifting and family polymorphism

So far we have pretended, we knew the exact type of the team performing the
lifting translation. In order to support polymorphism regarding team instances,
we need to show, that a sub-type of the static team type will always yield a
compatible role. Due to implicit inheritance of roles (which is not explained
here) a sub-team provides at least the same set of lift-methods. Thus static
typing is ensured.

Typing of roles in Object Teams applies family polymorphism[5] to ensure
consistent typing when overriding role classes (implicit inheritance). This in-
cludes the fact that any role type will in fact be anchored by the instance of the
team containing the role (denoted as teamInstance.RoleType). This requires
to observe a few constraints for externalized roles, i.e., references to a role that
are stored outside the team. However, for translation polymorphism anchoring
of role types is close to trivial, since lifting only happens within a team, thus all
role types are anchored by the this reference of the enclosing team instance.
By this type anchor the dynamic type of the team is already taken into ac-
count, which means that the lift method being used always matches the typing
requirements of the context that caused the translation.

3.5 Concluding safety considerations

We have given a definition of an algorithm for smart lifting. The problems that
might occur while executing this algorithm have been identified. We reconciled
flexibility with safety by making explicit different levels of safety. In a program

20

which compiles with no errors and no warning no runtime errors can occur.
Lifting can only be aborted due to a LiftingFailedException that is explicitly
thrown by an initializeRole method.

Programs compiled with a “potential ambiguity” warning can at runtime
produce actual ambiguity or find a mismatching role in the cache. Both cases
are reported by an exception. Similar considerations hold for abstract relevant
roles.

Code that may be aware of these lifting problems may catch the exception,
while lifting due to a callin binding silently aborts the callin call, since callers
in this case have no knowledge about lifting.

Class org.objectteams.Team, which is the super-class of all teams has a
hook method liftingExceptionDetected, which may be overridden in order
to react to lifting problems. This method may manually select a suitable role,
in which case execution continues normally.

4 METHOD DISPATCH REVISITED

The previous section presented the dynamic selection of role types during the
process of lifting. As shown, details of this polymorphic access of role classes
are regulated by the smart lifting mechanism. This selection of an appropriate
role type commonly precedes the sending of a method to the role. This section
analyzes the dynamic dispatch for role methods in Object Teams by examining
how roles fit into the general setting of object-oriented methods.

Some concepts of Object Teams are capable for serving for aspect-oriented

programming. With focus on the aspect-oriented facilities of Object Teams roles
are comparable to aspects in AspectJ[35]. From this point of view role methods
are designated to play the part of advice. Finally, callin method bindings realize
aspect weaving by identifying the targeted joinpoints.
For higher flexibility and reusability it is desirable for role methods to behave like
normal methods in object-oriented languages. A matter of particular interest
are the polymorphic qualities of such methods. Considering the problems with
aspectual polymorphism as pointed out in [4], this is not naturally given. The
following discusses some of the posed problems with respect to polymorphic
capabilities in AspectJ and contrasts them to our solution in Object Teams.

4.1 Extending aspects

Extending aspects is carried out by deriving and augmenting roles. In AspectJ
it is not possible to further extend an already concrete aspect?. In contrast,
Object Teams allow to extend even concrete roles at multiple levels. This fa-
cility results from the fact, that Object Teams does not statically weave advice
into the adapted methods. Instead of weaving concrete code only dispatching
functionality is inserted into the designated methods, which allows dynamic
navigation to the sub-aspect determined by smart lifting.

4We assume that this results from the restriction of static weaving. While statically weav-
ing, it is not possible to decide which of several possible concrete aspects should be woven.

21

4.2 Late binding of advice - redefined role methods

In Object Teams every role method may serve as an AspectJ-like advice. To
this end it has to be bound to a base method in the corresponding base class
by an after respectively before callin binding. Because such role methods are
in fact normal Java methods they offer the polymorphic late binding facility
as well. So a binding in a super-role may cause an invocation of a redefined
method in a sub-role.

The rules for role methods that are to be bound with a replace callin
binding are slightly different. Such a binding can only be applied to role methods
with the callin modifier. Inside a callin method it is possible to perform
an invocation of the overridden (base-) method®. This is done by a so called
base-call which can be seen as the equivalent of a super-call for delegation
based inheritance. callin methods must not be called explicitly, because of the
otherwise undefined semantics of the base-call.

Base-calls bring in another form of dynamic dispatch. Here the full set of
binding information is dynamically evaluated. A callin method may be bound
to several base methods. The selection of the base method to invoke on a given
base-call can only be decided at run-time. Statically neither the target nor the
method name of this call is known.

Given a role is bound to a base and one of its methods is bound by a replace
callin with a base-call, the following applies for subclassing: If a sub-role is
bound to a sub-base, the base-call is recalling the (maybe redefined) sub-base-
method.

After all it is even possible, that a base-call is entirely unbound at certain points
in the role hierarchy. This is not a problem, because unbound callin methods
are never called.

Consider the example of a tracking aspect for a method incrXY for FigureElements,
as discussed in [4]. The aspect also applies to the subclass Point, where it should
behave in a slightly different way. For this purpose the appropriated advice shall
be redefined. In AspectJ this encounters a problem, because of the impossibility
of overriding an advice (as criticized in [4]) In AspectJ advices are nameless and
thus bad candidates for redefinition.

The following listing shows, that Object Team has the ability to face such
scenario: callin bound role methods can be overridden in sub-role classes which
are bound to more special base classes.

5In AspectJ this is achieved by a proceed call.

22

"Advice’ overriding for dynamic dispatch:

public team class TrackerTeam {
class FigureTracker playedBy FigureElement {
public void tracklncr() {
System.out. println (" TrackerTeam:
+ "Moving a figure element”);
}

abstract int getX();
abstract int getY();
getX —> getX;
getY —> getY;

i

tracklncr <— after incrXY;

}

class PointTracker extends FigureTracker
playedBy Point

{
public void tracklncr() {
System.out. println (" TrackerTeam: "
+ "Moving the point at ("
+tgetX () + ", "+ getY() + "))
}
}

}

The role PointTracker inherits from FigureTracker and is bound to the
more special base class Point. In the sub-role the method trackIncr is re-
defined as needed. Calling incrXY() on a FigureElement will now cause an
invocation of FigureTracker.trackIncr, while calling the same method on a
Point object (or any subclass thereof), will lead to an execution of the over-
ridden trackIncr in PointTracker, because smart lifting lifts each Point to a
PointTracker role.

4.3 Inheritance of method bindings

In Object Teams method bindings are inherited to sub-roles. If a sub-role rede-
fines a method, the binding will now apply to the new version of the method.
On the other hand method bindings can be omitted and deferred to sub-roles.
This allows the flexible definition of an advice without specifying the point to
which it shall be applied.

In AspectJ this is supported by the possibility of abstract pointcut designa-
tors which can be used in an advice definition and made concrete in a derived
aspect. Furthermore it is possible to override an already concrete pointcut des-
ignator. Unfortunately this holds the danger of breaking inherited advice code
that makes assumptions on the return type of the pointcut designator, which
are not fulfilled by the redefined version, as reported in [4]. The problem is the
incomplete signature definition of pointcut designators: the return type is not
contained in its declaration.

23

4.4 Base-side aspect inheritance

The previous examinations focused on the role-side of aspect inheritance. The
remaining of this section will take a look at the polymorphic characteristics
regarding the hierarchy of base classes.

4.4.1 Advicing inherited methods

A role may be bound to a base class in order to adapt one of its methods. A
question arises if the designated method is not defined in the bound base class
itself but inherited from a superclass. In this case there is no code located in
the subclass where to weave in the advice. Like an unbound base-call such an
operation initially has no target. To allow the adaption of inherited methods
(which does not affect the super-classes) we choose the option of generating
a redefinition of the relevant method with nothing but a call to the original
version. Now weaving into the redefined version is straight forward.

4.5 Orthogonality

We have demonstrated how aspect-oriented programming with role methods
and callin bindings avoids problems that have been reported with respect to
AspectJ. Role methods and method bindings behave sound in the context of
inheritance, overriding and method dispatch. These are hints that translation
polymorphism is sufficiently orthogonal to subtype polymorphism. In the next
section we will elaborate on these issues as two dimensions of dispatch and
polymorphism.

5 Two Dimensional Dispatch

In the introduction we discussed dynamic dispatch as the mechanism for com-
bining shared and un-shared parts of an implementation. The Template Method
pattern served as an example where the shared template method must implic-
itly know about the invocation context — the original call target — in order
to dispatch calls of a hook method to that original call target. This invocation
context is not visible in the source code of the template method, but at run-time
the dynamic type of self carries this information.

Instance dispatch.

We will now interpret lifting in analogy to method dispatch. Consider a method
call on some base instance which is potentially affected by some callin binding in
the system. Before any method is actually invoked, lifting may perform dynamic
instance dispatch. This means the current context is investigated in order to
find the most suitable call target.

Now what makes the context for instance dispatch? Here lies the major
difference between both kinds of dispatch. Method dispatch only needs one
type for lookup: the dynamic type of the call target. Lifting requires three
pieces of information: a base instance, a team instance and a required role type.

e The base instance is given at the call site.
e Candidates for the required role type are all role classes that have a callin

binding for the particular base method being called.

24

e Team instances are retrieved from the global state of the program as the
set of all currently active teams.

Of course, only matching pairs of role types and team instances are considered,
i.e., the role type must be a role of the particular team. Given that more than
one team may be active affecting the same base method by callin, teams are
internally kept in a stack, where the most recently activated team has highest
priority for method interception.

Contextual lookup.

While method dispatch relies on local context (the dynamic type of the call
target) only, instance dispatch depends on the global state of the application —
the stack of active team instances. Thus it is possible to implement different
kinds of program modes in a modular way.

From a technical point of view, method calls now consist of a sequence of
lookups regarding callin bindings, active teams, roles within those teams before
finally using normal method dispatch to find the most suitable role method.
Conceptually, any program state could also be seen as a stack of layers, each
layer being defined by an active team instance containing a set of role instances,
which decorate underlying base instances. Some of these role instances may
exist only wvirtually, which means they have not been created yet, but will trans-
parently be created by lifting prior to the first usage. Any virtually existent
role instance may contain overrides for a given base method, where these over-
rides are specified by callin method bindings. When a base method is called, all
these overrides are considered from the top to the bottom of the stack of layers
(teams).

Also some dispatching is involved, when invoking a method that is bound
by callout. However, the lookups involved in callout bindings are fairly trivial,
because only lowering and normal method dispatch are combined here.

Overcoming Object Schizophrenia.

Considering instance dispatch as just another technique that transparently com-
bines shared and un-shared parts (here: instances), it becomes easier to think
of sets of atomic instances as one compound object, since explicit navigation be-
tween atoms is not needed any more. Just like subtype polymorphism allows to
view an instance under different guises (static types) translation polymorphism
pretends that a role and its base are just different guises of the same entity.
Within a team, it is usually sufficient to see role instances as full representatives
for their base instance. Any relevant base property should be accessed through
the role and be bound by callout. In this perspective a role instance and its
base are considered the same instance.

Control over role instances is given by creating and activating team instances.
Each team instances defines a self-contained view of the application. For more
intricate cases, fine grained control over team membership is given through API
functions of class org.objectteams.Team. While these mechanisms fall beyond
the scope of this paper, it is important to notice that role instances can be
created and attached to base instances at different levels of granularity, which
pertains the full flexibility of the dynamic approach, using instance composition
and delegation.

With these two perspectives of transparency and control we balanced the
forces that in other approaches lead to all the problems of “object schizophre-

nia”.

25

Practical value and generality.

We have presented a solution that adds flexibility to class based approaches
and makes instance based composition and delegation more convenient to use.
Ongoing practical experiments are encouraging as they demonstrate the feasi-
bility of the approach. It appears that designing a system with Object Teams
not only improves modularity but first of all leads to a better understanding of
conceptual structures and their interdependencies. Of course, such claims need
further evaluation in controlled practical case studies.

We are confident, that we have come to a solution that besides being useful
in practise is also general enough to cover a large set of structures, problems,
requirements etc. The reason for believing so is the symmetry of method dis-
patch and instance dispatch, of static inheritance and delegation. The following
table contrasts both dimensions to each other, demonstrating how well they
complement each other.

’ Method dispatch

Sharing of method im-

\ Instance dispatch ‘

Sharing of instances by

plementations by static
inheritance

role-base links and dele-
gation

Dynamic type of call tar-
get as local context

Stack of active team in-
stances as global con-

text
Substitutability by | Substitutability by
subtype polymorphism translation polymor-
phism

6 Related Work

In the direct context of Object Teams, the following approaches apply some sort
of lifting or “wrapper recycling”: PIROL [11, 13], PCA [22], their implemen-
tation JADE [10], LAC [12] (a prototype for Object Teams) and Caesar [21].
Aspectual Collaborations [18] — although they evolved from the same source:
Aspectual Components [17] — appear to statically weave code instead of our
instance based composition.

Some programming languages do support delegation and role objects in-
cluding Self [32], Lava [16] and Chameleon [8]. In these models, a caller mostly
needs to be aware of specific roles in order to use role behavior. So called
“constituent methods” in the Chameleon model are similar to our callin-bound
methods and provide for some kind of dynamic AOP. Several dynamic AOP
systems [24, 14, 28] maintain aspects as runtime instances that can be attached,
even chained and detached. With all systems mentioned, the lookup of attached
aspects only retrieves instances that have been attached explicitly. This requires
explicit knowledge about all instances that should be affected. The lookup only
concerns the target object of a method call. The lifting operation of Object
Teams may create roles on demand and furthermore applies to callin parame-
ters and callout results, thus mapping graphs of base objects to graphs of role
objects, much in the spirit of AP[19], AP&PCI20] and related models.

Recently, Truyen and Jgrgensen developed LasagnelJ [15] realizing their gen-
eral model Lasagne [31]. In this language, wrappers can be defined similar
to our roles. Wrappers can furthermore be grouped to extensions, denoted as

26

packages. While extensions share the idea of grouping collaborating roles, they
cannot be instantiated and are thus limited when compared to teams. Lasag-
neJ features so-called “constructive downcasts”, which have similar semantics
as lifting in Object Teams. LasagneJ also applies on-demand wrapping while
in the control flow of a wrapper. We interpret this as a variant of contextual
dispatch: LasagnelJ passes an invocation context along each control flow which
determines the extensions whose wrappers should be effective.

In LasagneJ dynamic selection of a suitable wrapper class is explicitly avoided,
by allowing only one wrapper class for each base class (including sub-classes)
per extension. In [15] the authors mention this restriction as an area of fur-
ther work. We have shown, to which extent smart lifting can do away with
these restrictions. Also the static nature of extensions (i.e., lack of instantia-
bility) restricts the (need for) wrapper selection. Finally, method bindings are
not explicit as in Object Teams, but established by name equality. Interest-
ingly, LasagneJ allows to select between two flavors of overriding — consult
vs. delegate — by adding a modifier to the overriding method.

The language C#[1] allows to provide custom conversions, which could help
in implementing smart lifting. Lifting would be considered an explicit con-
version, lowering an implicit conversion. The application of lifting would then
require a cast operator while lowering would look like a polymorphic assignment.
This analogy confirms us in our goal to generalize over sub-type polymorphism
and translation polymorphism. It is not clear, how the Team context would be
available to custom conversions, since these are static methods that have access
only to their explicit parameter. Of course, C# lacks the concepts of Teams
and roles, and thus translation polymorphism can only be mimicked partially,
requiring a lot of hand-coding.

The programming language Sather allows to introduce super-types a-posteriori
[29]. However, it lacks support to do so at run-time. In an outline, how Subject
Oriented Programming could become more dynamic, Harrison et al. [9] use the
notion of dynamic super-types. They combine concepts of viewpoints and dy-
namic re-typing in order to allow per-instance subject activation. Unfortunately,
the ideas from this work have never seen a realization. It’s spirit is, however,
closely related to Object Teams. The Hyper/J[30, 23] language was the first
to introduce on-demand re-modularization. By extracting elements from exist-
ing packages and assigning them to concerns and dimensions Hyper/J allows to
integrate modules with mismatching internal structures. Hyper/J does this in
a purely static way by composing new classes at compile time. Object Teams
maintain separate objects at run-time which by the lifting/lowering operations
are related to each other.

Lifting also implements environmental polymorphism[7], as it depends on
the set of currently active Teams. We are currently investigating how Team
activation and lifting can be used to implement cflow-like aspect binding while
adhering to the requirements of environmental advice[4].

Harrison et al [9] also compare the issues at hand to schema evolution in
object-oriented databases. One difficulty with dynamic re-typing is the question
of reversibility. In [13] we have presented a mechanism for run-time specializa-
tion of objects, called upgrading. Upgrading uses sub-type polymorphism to
ensure type safety. Once a link to the specialized object exists, the object may
never drop its acquired type. Object Teams facilitate reversing the adaptation
by two different means. First, the adaptation is not intrusive on the object,

27

since roles are added as distinct entities. Secondly, a Team can be used as a
border for strictly encapsulating all its roles. By not letting a link to a role es-
cape from the enclosing Team instance, it can be assured that a role can safely
be destroyed, once the Team ceases being.

7 Conclusion

We have presented the concepts and mechanisms of translation polymorphism
as realized in the ObjectTeams/Java language. By this concept we combine
findings of research regarding inheritance, delegation, collaborations, aspects
and views.

First, team activation provides a means to abstract from the activation of
elementary objects. This requires role objects to be created on-demand. In
order to preserve state of role objects, a cache of roles must be used per team
or role hierarchy.

Second, by applying translation polymorphism to call targets, parameters
and results we achieve a mapping between graphs of objects, not just isolated
objects.

Third, the fact, that translation polymorphism is mostly transparent in a
program helps to decouple aspects from affected base classes. Both worlds are
implemented completely in their own ontology, only declarative bindings define
the relation of both worlds.

Fourth, if inheritance on the sides of bases and roles should be supported,
smart lifting is inevitable. Smart lifting helps to attach an aspect with its own
structure to a base module with a different structure. Smart lifting ensures that
always the most suitable role will be created or retrieved.

In a program that translates without warnings, lifting is a perfectly sound
and safe operation. If more flexibility is needed, a compiler warning and two
kinds of exceptions alert the developer and ensure that the program will behave
deterministically.

Fifth, regular role methods supersede advice in aspect languages. By impos-
ing only minimal restrictions on methods to be bound by callin, Object Teams
avoid problems relating to aspect polymorphism as reported with respect to
AspectJ.

Thus, translation polymorphism subsumes a number of proposed concepts
by a single new mechanism: dynamic instance dispatch.

7.1 Future work

In order to fully support a flexible life-cycle of roles, we would like to find means
for canceling existing roles. Currently, we can only dispose a team as a whole.
If no externalized roles are used, all existing roles of a team to be disposed can
safely be disposed, too. Disposing or canceling single roles is difficult, because
this would invalidate all links to the given role, and to-date we see no mechanism
that would easily allow dynamic role replacement.

The Object Teams model and its realization as ObjectTeams/Java are fairly
stable by now. The next level of research, which has already started, is the
evaluation of the language in real industrial software development.

28

References

1]
2]

[3]

C# language specification, 2. edition. Standard ECMA-334, 2002.

M. Aksit, editor. Software Architecture and Component Technology: State
of the Art in Research and Practice. Kluwer Academic Publishers, 2001.

Proc. of 2nd International Conference on Aspect Oriented Software Devel-
opment, Boston, USA, 2003. ACM Press.

E. Ernst and D. Lorenz. Aspects and polymorphism in Aspect]. In
AOSD’03 [3], pages 150-157.

Erik Ernst. Family polymorphism. In Proc. of ECOOP’01, number 2072
in LNCS, pages 303—-326. Springer Verlag, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

J. Gil and D. Lorenz. Environmental acquistion — a new inheritance like
abstraction mechanism. In Proc. of OOPSLA’96, pages 214-231. ACM,
1996.

Kasper B. Graversen and Johannes Beyer. Chameleon, August 2002. Mas-
ters thesis. IT-University of Copenhagen.

W. Harrison, H. Kilov, H. Ossher, and I. Simmonds. From dynamic super-
types to subjects: a natural way to specify and develop systems. Systems
Journal 35(2), IBM Systems Journal, 1996.

Michael Haupt. JADE: Entwurf und Implementierung eines
Sprachkonstruktes zur dynamischen Komposition wiederverwend-
barer Softwaremodule als Erweiterung der Programmiersprache
Java. Diploma thesis, Universitat-Gesamthochschule Siegen,
www.st.informatik.tu-darmstadt.de/projects/JADE/, December 2000.

S. Herrmann and M. Mezini. PIROL: A case study for multidimensional
separation of concerns in software engineering environments. In Proc. of

OOPSLA 2000. ACM, 2000.

S. Herrmann and M. Mezini. Combining composition styles in the evolvable
language LAC. In Proc. of ASoC workshop at the 23nd ICSE, 2001.

S. Herrmann and M. Mezini. Connectors for bridging mismatches between
the components of a software engineering environment. IEE Proceedings —
Software, 2001.

Robert Hirschfeld. AspectS - aspect-oriented programming with squeak. In
M. Aksit, M. Mezini, and R. Unland, editors, NetObjectDays, volume 2591
of Lecture Notes in Computer Science. Springer, 2003.

B. Jgrgensen and E Truyen. Evolution of collective object behavior in
presence of simultaneous client-specific view. In Proceedings of the 9th
international Conference on Object-Oriented Information OOIS 03, volume
2817 of LNCS, pages 18-32. Springer Verlag, 2003.

29

[16]

[17]

[18]

Giinter Kniesel. Dynamic Object-Based Inheritance with Subtyping. PhD
thesis, Universitat Bonn, 2000.

K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual
components. In Technical Report, Northeastern University, April 1999.

K. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations: Com-
bining modules and aspects. The Computer Journal, 46(5):542-565, sept
2003.

Karl Lieberherr. Adaptive Programming: the Demeter Method. PWS Pub-
lishing Company, 1996.

M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for
evolutionary software development. In Proc. OOPSLA’98, volume 33 of
SIGPLAN Notices, pages 97-116. ACM, 1998.

M. Mezini and K. Ostermann. Conquering aspects with caesar. In AOSD’03
[3].

M. Mezini, L. Seiter, and K. Lieberherr. Software Architecture and Com-
ponent Technology: State of the Art in Research and Practice, chapter
Component Integration with Pluggable Composite Adapters. In Aksit [2],
2001.

H. Ossher and P. Tarr. Software Architecture and Component Technol-
ogy: State of the Art in Research and Practice, chapter Multi-Dimensional
Separation of Concerns and The Hyperspace Approach. In Aksit [2], 2001.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible so-
lution for aspect-oriented programming in java. In Proc. Reflection 2001,
number 2192 in LNCS, pages 1-24. Springer Verlag, 2001.

IBM Research. Subject-oriented programming and design pat-
terns. http://www.research.ibm.com/sop/sopcpats.htm (last accessed
March 2004), 1997.

K. C. Sekharaiah and D. J. Ram. Object schizophrenia problem in modeling
is-role-of inheritance. In Inheritance Workshop at ECOOP 2002, 2002.

L. A. Stein, H. Lieberman, and D. Ungar. A shared view of shar-
ing: The Treaty of Orlando. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Applications, pages 31-48. ACM
Press/Addison-Wesley, Reading (MA), USA, 1989.

D. Suvee, W Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented
approach tailored for component based software development. In AOSD’03
[3], pages 21-29.

C. Szyperski, S. Omohundro, and S. Murer. Engineering a programming
language — the type and class system of Sather. In Proc. International
Conference on Programming Languages and System Architectures, volume
782 of LNCS. Springer-Verlag, March 1994.

30

[30]

[31]

[32]

33]

P. Tarr and H. Ossher. Hyper/J User and Installation Manual. IBM Cor-
poration, 2000.

E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Ngrregaard
Jorgensen. Dynamic and selective combination of extensions in component-
based applications. In Proc. of the 23rd ICSE, 2001.

D. Ungar and R. B. Smith. Self: The power of simplicity. In Proc. of
OOPSLA’87, 1987.

M. Veit and S. Herrmann. Model-view-controller and object teams: A
perfect match of paradigms. In AOSD’03 [3].

Peter Wegner. Dimensions of object-based language design. In Proc. of
OOPSLA’87, 1987.

Xerox Corporation. AspectJ Programming Guide. available from
http://eclipse.org/aspectj.

31

