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Abstract

A major challenge in the design of programming languages
is the definition of how elementary concepts interact such as
to approximate the impression of orthogonality. We propose
to use techniques of concern modeling for capturing such
interactions with the goal of providing a language definition
which aligns intuition and actual semantics. We report on
the design of Object Teams, a programming model aiming
at improving support for modularity by combining several
well explored techniques.

1 Introduction

Most recent publications on the design of program-
ming languages focus on the introduction of one or
a few innovative concepts. The technical elaboration
of such concepts is often performed by integrating the
new concepts into an existing host language, these days
usually Java. Such integration demonstrates, how the
new concept fits into the “normal” object oriented pro-
gramming model.

Hoare introduces a strict distinction between the ac-
tivities of designing a language feature versus a com-
plete programming language [9]. It is our belief, that
lately too much emphasis has been put on the role of
single features underestimating the importance of in-
teractions between different concepts.

Is it still, that language designers believe in orthog-
onality between language concepts? Is adding a new
concept to a language really adding a new dimension,
just one more degree of freedom?

In this paper we propose a fresh look on orthogonal-
ity, which is based on the pessimistic assessment that
concept interaction is the rule not the exception. Thus
language designers should never assume any orthog-
onality. Through the hard work of language design-
ers, however, users of that language (the programmers)
should be assured that their programs will behave as
expected. They should be given maximum freedom of
combining different language concepts under the great-
est possible impression of orthogonality.

We propose a process of three steps to achieve a us-
able programming language incorporating state-of-the-
art concepts.

Un-tangling concepts. First, the concepts to be
composed into the new language should be un-tangled.
This step identifies the basic building blocks for lan-
guage design. As an example, Ostermann and Mezini
analyze the concepts underlying inheritance and aggre-
gation, isolating five basic concepts which were tangled
in the original concepts [15]. Further analysis should
not be based on bundled concepts like inheritance, but
on “more atomic” things like acquisition or overriding.

Concern Interaction Matrix. A second step
should systematically explore all interactions between
the given set of basic concepts. For this step we pro-
pose our technique of a Concern Interaction Matrix [7].
This centrally means to document for each pair of con-
cepts how they interact with each other. It would be
naive to expect phases one and two to be strictly sepa-
rable. More so, describing concept interactions helps to
understand what should be considered a suitable level
of concept decomposition. I.e., while constructing the
Concern Interaction Matrix some supposedly atomic
concepts may need to be decomposed further.

Usable concept bundles. The second step gener-
ates a very detailed picture of a programming language.
All these details would be overwhelming for an ordi-
nary programmer. After basic concepts and all their
interactions have been explored and are well under-
stood, programmers might need to be provided with
more intuitive “bundles” of concepts. This looks like
the initial input to the overall design process. We be-
lieve that in fact many existing concepts have proven
useful in praxis because they bundle more atomic con-
cepts in a usable way. This raises the level of abstrac-
tion but restricts the programmer, in that some unin-
tended combinations of atomic concepts might not be
expressible in the resulting language.



The underlying idea of this three-step process pro-
poses two distinct views on a language: the designer’s
view must be very detailed, dealing with atomicity and
concept interactions. The programmers’ view should
be less detailed, more based on abstraction and intu-
ition. The programmers’ view should give the impres-
sion of orthogonality, because this is the precondition
to creative combination of language concepts in order
to solve particular problems in each program’s domain.

The final assessment of a programming language
needs to take into account, whether intuition (includ-
ing the impression of orthogonality) ever breaks or sug-
gests results different from the actual semantics of the
language. There might be cases, where the intuition
cannot be maintained but the programming environ-
ment should inform the programmer what’s going on,
provide explanation and possible remedies.

Language design as concern modeling. Accord-
ing to our observation, language design is no less com-
plex than design of large applications. In the latter
field, concern modeling [17] is emerging as a system-
atic, yet pragmatic method for managing a complex
network of requirements. While only a formal model of
a programming language ensures complete and unam-
biguous definition of its semantics, we see two reasons
for (also) using a less formal model: For a real-world
programming language a formal model is very expen-
sive to obtain. Most approaches to formally defining
existing programming languages work with a reduced
subset of the respective language. The effort of fill-
ing in remaining gaps grows surely (much) more than
linear. This is not really an excuse on the long run,
but before a language design has faithfully approached
a fix-point more light-weight techniques are probably
more efficient.

Secondly, a formal model may prove well-definedness
for a programming language. It is, however, not clear
whether it really gives an understanding whether intu-
itive and precise semantics are well aligned. The reason
for this can be seen in the structure of formal models,
which suffers from similar problems concerning separa-
tion of concerns as also programs do. Formal models,
just like programs, are decomposed along one domi-
nant dimension. After separating static and dynamic
semantics this dimension typically is an enumeration of
all syntactic elements of the language. This hardly sup-
ports looking at a language from multiple perspectives,
especially if those perspectives are not independent.

The middle ground is to be found in a systematic
multi-perspective approach.

Reporting from the design of Object Teams.
Throughout this paper, we will report on the design
of the programming model Object Teams[6] and its

embedding into Java, ObjectTeams/Java (OT/J for
short) [14]. The central goal of Object Teams is to raise
the level of modularity for complex problems. Hence,
this paper tries to un-tangle some issues of modularity.
More precisely, we explore different aspects of concepts
for modules and, subsequently, concepts for composi-
tion (Sect. 2). Section 3 starts with a terse illustration
of Object Teams and unfolds how elementary concepts
for modules and compositions map to the concepts of
Object Teams. Section 4 reports on a few obstacles
that where encountered when embedding the model
into Java. These observations suggest the direction for
a subsequent language design, which may not be hosted
by Java.

In our conclusion we hope to convince the reader
that we as a research community have enough language
concepts, we need deeper understanding on their inter-
actions, find smarter ways of combining them, pushing
each concept to its full consequence.

2 Towards a concern model of
modularity

The programming model Object Teams emerged from
the field of AOP, where modularity is brought to prob-
lems which until then have been cross-cutting the dom-
inant decomposition of a program, no matter how good
the design. Object Teams transcend this pursuit for
better modularity, incorporating ideas from adaptive
programming, role objects, layered designs, to name
only the most obvious sources of influence. In order to
give some inside view, beyond advertising this model
to programmers, we will elaborate on the two faces of
the coin “modularity”. First, we investigate what is a
module. Only after un-tangling some motivations and
solutions we will dive into the second face: composition
of modules.

2.1 Decomposing module concepts

Much has been written about modularity, and all agree
on the importance of modularity. This agreement may,
however, be based on the unspoken diversity of inter-
preting the notion modularity. Throughout this sec-
tion we will use the notion “module” in its broadest
sense, including, e.g., concepts like classes, packages,
components. Modularity is tightly coupled to a num-
ber of other important concepts like information hid-
ing, encapsulation, locality, and decoupling. A more
detailed analysis requires to investigate different mo-
tivations for wanting modules. Our views on module
concepts will differ to a surprisingly high degree, de-
pending on the respective motivation.



Organizational aspects. From an organizational
point of view, modules are good for splitting devel-
opment efforts. On a small scale this means that a
module should be identifiable as one or a set of files.
This is the pre-requisite for different developers work-
ing in parallel on different modules of the same system.
Along this road, separate compilation should be re-
garded as an organizational issue, to. At a larger scale
this calls for the possibility of independent deployment
of components from different vendors.

In order to guarantee minimum independence be-
tween different developers, modules should define sep-
arate name spaces enabling developers to give elements
in a module suitable names without worrying about
name clashes with elements in other modules. From
the organizational point of view all other properties of
modules relate more to the issue of composition or in-
tegration. In that context we will look at interfaces
and contracts.

Separate processing. Apart from development ef-
forts in a narrow sense, what else do we want to do
with a module? We have already mentioned separate
compilation. Also separate type checking is of high im-
portance. Pushing the limits of type checking we finally
strive for “modular reasoning”. Reasoning again will
postulate different requirements to modules depending
on the properties which we want to prove.

Difference modules. Some modules may not be in-
tended for integration or deployment “as is”. Frequent
uses of modules are adaptation and refinement. This
process of enhancement takes a module and provides
a new module. Here the goal may be, to put all en-
hancements into a separate module, leaving the orig-
inal module intact and bundling a consistent set of
enhancements into a difference module. Some differ-
ence modules will be designed with respect to a spe-
cific base module, others should be composable with
different base modules, which can be achieved by an
explicit expected interface. Anticipating refinement, it
is desirable to be able to construct incomplete modules,
i.e., modules which can only be used together with a
difference module. From this perspective, abstractness
and an expected interface differ only in the intended
style of composition.

Instances. If modules should provide autonomous
entities also at runtime, a concept of instances comes
into play. At an intuitive level, the conceptual value of
instantiation is beyond discussion. A more precise mo-
tivation is much harder to grasp, because this concepts
fits so nicely into our intuition. Of course, instances
of primitive data types are indispensable. Instantiable
array and record types add much expressiveness to a

language. Why do we want more? From all object-
oriented concepts, only dynamic binding cannot be
simulated easily in a modular language like Modula-2.
What is the reason for wanting dynamic binding? It
is a matter of responsibility: the callee knows better
about how to react to a message than the caller. This
is the autonomy gained by instantiability in the ob-
ject oriented context. It is a matter of composition
techniques to provide different points in time, when to
decide which behavior should be associated to which
instance (compile time, creation time, or runtime).

Protection. At a first look, working with modules
seems to guarantee locality. Here object orientation
introduces a new problem: aliasing breaks locality. An
analysis of what messages will be sent to a given object
may in the worst case involve analysis of the whole pro-
gram, since little is known about number and location
of references to an object. If an object shall be pro-
tected, e.g., due to security constraints, new, mostly
instance based, borders have to established within a
program. These borders may or may not be identi-
fied with modules. An even closer look reveals a set
of different possible goals, concerning the protection
of objects. Outside a give border an object may have
to be completely inaccessible. It might also suffice to
restrict outside visibility to read-only references. An
different goal might be to just prevent access to inter-
nal information. In this case it may be perfectly legal
to access an object by a narrower interface, if it can
be assured, that this interface operates on an isolated
slice of the object which is independent of the secret
slice.

2.2 Decomposing composition tech-

niques

The two seemingly elementary composition techniques
in object orientation are references and inheritance. As
already mentioned, inheritance is by itself a bundle of
concepts. Slightly adapted from [15] the following ele-
mentary concepts can be identified:

acquisition: A class or instance may acquire function-
ality from a super-class or parent instance which
is available for method calls without further qual-
ification.

overriding: A class or instance may override methods
of another class or instance to which it is attached.
Overriding may occur shallow (once the control
is passed to the parent, no overriding occurs any
more) or deeply, i.e., the two entities are seen as
one and every invocation of the original method is
overridden by the new method.



subtyping: An instance of a more specific kind (sub-
class or delegation-based object composition) is
substitutable to the more general kind.

The paper[15] also mentions transparent redirection
(which we subsume as deep overriding) and polymor-
phism in a sense which is meaningless for classical in-
heritance, but relates to delegation based composition.
We will come back to the latter.

Categories of associations. It has been discussed
many times, many places, that modeling notations like
the UML tend to provide more relationships than just
references and inheritance. The detailed distinction of
association, aggregation and composition is not found
in traditional object oriented programming languages.
The discussion of alias control already touched the is-
sue, that stronger forms of referencing like composition
are in fact desirable. Similar concepts in this context
are containment and ownership. Only with some kind
of containment, these techniques scale for large sys-
tems. Containment should allow nesting and layered
designs.

Along those lines, the desire for modules larger than
classes not necessarily calls for new modules but for
new module relationships. Java packages are an ex-
ample for modules larger than classes, which are just
too weak, because there are no means to aggregate and
refine packages. Components are one solution, but for
several reasons such concept should be available within
a programming language not by an external infrastruc-
ture, which might just be too heavy-weight.

Adaptation relations. Recently, aspect-oriented
programming introduced a new style of composition
which is mainly based on method interception. While
some approaches try to unify traditional and aspect
oriented message passing to event based programming,
for the analysis at hand method call and method in-
terception are more explicit. At a larger scale the new
relationship is adaptation. By this, a difference mod-
ule may from the outside change the behavior of an
existing module. Such difference module may either
be invisible, i.e., its only effect is a modified behavior
of the adapted module, or the adapter may provide a
public interface. In the latter case, the adapter medi-
ates between an agnostic base and an informed part of
the program.

In environments where modules cannot be composed
using refinement and adaptation using explicit rela-
tionships, those tasks are usually performed by so-
called glue code, techniques which are mostly outside
public discussion. Effective glue code programming re-
quires something like a reflective scripting language.
Glue code is not measured by elegance, but the only

goal is to get the job done, because structured tech-
niques often just cannot solve the problem. Thus,
glue code often intentionally breaks encapsulation, by-
passes public interfaces etc. pp. Glue code, as it is,
gives a hint at some severe nuisance. I don’t want to
be misunderstood here: this is not the fault of people
writing glue code, they often have no alternative and
just perform an awfully important job. Nor is it in
all cases the fault of the people who wrote the com-
ponents. The fact that these components don’t fit to-
gether “as is” but have to be forged into a composition
cannot be avoided for large scale development and large
scale re-use. Any technology that helps to perform the
task of composition in a somewhat more structured
way greatly improves this situation. The point to note
is: if programming languages in the first place provide
means for adaptation relations this may eventually ob-
solete the “power-tools” by which glue code can force
components into unintended usage contexts.

Granularity of relations. After talking about large
scale module composition, on the other side of the spec-
trum we should ask: what is the level of detail by which
interfaces and other relations are defined. Many main-
tenance tasks would be easier, if it were explicit which
methods exactly are imported from a given module.
Changes to methods not in this list are probably harm-
less. Also a module’s export could be much more ex-
plicit than what can be expressed by Java’s four levels
of visibility. Independent visibility control for clients
and sub-classes is definitively desirable and directed ex-
port to specific clients could also help to keep interfaces
narrow. Even overriding of methods is a good can-
didate for explicit specification (cf. Eiffel’s redefine
clause). All these are just syntactic specifications. We
just mention that contracts should also be smoothly
integrated in a modern programming language as an
enrichment of interfaces.

This list of techniques should give an impression of
what might be possible in terms of fine grained, ex-
plicit and expressive definition of module composition.
Todays programming languages restrict programmers
in what can be expressed. Of course convenience is a
striking argument for giving predefined bundles of com-
position techniques. Typical problems can be solved
with little effort. Just once in a while the bundles have
to be reconsidered in order to allow for the develop-
ment of programming languages that better address
todays problems in programming.

3 Modularity in Object Teams

The above discussion spans the field for a detailed pre-
sentation of the programming model Object Teams.
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Figure 1: Typical structure using Object Teams

We will, however, start with a brief intuitive introduc-
tion. For brevity, we cannot present an example which
demonstrates all features of Object Teams. We apol-
ogize for referring the reader to previous publications
[6, 18].

3.1 An overview

Object Teams [6, 18] introduce two new kinds of mod-
ules and new relationships on four different levels. A
typical combination of these constructs is illustrated in
Fig. 1.

3.1.1 Modules

Team. A Team is an instantiable module for collabo-
rating classes which combines properties of classes and
packages.

Role. A role class is a class contained in a Team.
Accordingly each role instance is contained in a Team
instance.

3.1.2 Relationships

PlayedBy. A role class may be associated to a base
class (any kind of class) by a playedBy relationship.
This expresses that each role instance will be linked
to a base instance of the given class. This relation-
ship allows to exploit all the benefits of role objects
(see e.g., [10]). In contrast to other techniques for role
objects, we require a detailed specification of the role—
base composition (see callout/callin below).

Translation polymorphism. There is no sub-type
relation between associated role and base classes. Still
in specific situations their instances are substitutable.
Interestingly, this substitutability can be achieved for
both directions. Substitution involves two kinds of
translations which are called lifting and lowering. The
latter is a simple navigation along a hidden parent link.

The former retrieves an appropriate role instance for
a given base object. Sequences of lifting and lowering
preserve identity and state.

The lifting translation uses a Team instance as the
context that disambiguates the 1:n base-role associa-
tion. Thus, lifting is a ternary association: it links base
instances to role instances with respect to the context
of a Team instance.

Lifting and lowering apply at every data flow across
the border of a Team which involves types that have
a playedBy relation. For each point of translation the
language implementation evaluates these three inputs:
the dynamic type of the object to be passed, the Team
instance whose border is to be crossed and the expected
type at the receiving side. By these ingredients the
translations are performed automatically, i.e., without
explicit action by the programmer.

Callout. A declarative method binding, by which an
abstract role method is bound to a base method. This
binding is implemented by forwarding. Method bind-
ings are part of the definition of a role class.

Callin. The inverse of callout, this binding declares
that a given role method should be executed for ev-
ery call of the associated base method. When speci-
fied with the modifier replace this means that a base
method is overridden by a role method. Other op-
tions are to add the role method before or after the
base method. Callin bindings implement a form of call-
backs, rely on method interception, and can be seen as
advice in the terminology of AspectJ.

Parameter mappings. Both kinds of method bind-
ing permit to declaratively re-arrange parameter lists.

Team inheritance. Inheritance between Teams
works as normal for direct methods and attributes of
the Team. It entails implicit inheritance for all con-
tained role classes.

Implicit inheritance. A Team has access to all roles
defined in one of its (indirect) super-Teams. If the
Team defines a role by the same name as a role acquired
from a super-Team, the new role implicitly inherits all
features of its precursor and overrides the precursor.
Thus, role classes are virtual classes (cf. [3]).

Lack of sub-typing. Implicit inheritance does not
establish a sub-type relation between role classes from
different Teams. This is the precondition to static type
safety of implicit inheritance.



Adapts. This relationship is not explicit in the lan-
guage, but all adaptations, which callin bindings per-
form on base classes, are effective only if a correspond-
ing Team instance has been activated. Thus, adapta-
tion is a dynamic relation between a Team instance
and a set of base classes.

3.2 Mapping concepts to our analysis

We will no map the concepts of Object Teams to the
elementary concepts of modules and composition from
our analysis.

3.2.1 Modules

Organization and separate processing. Role
classes, which are similar to inner classes, can option-
ally be stored either in-line in the file of the enclos-
ing Team, or as separate files in a directory dedicated
to all roles of on Team class. Name spaces between
a Team and the adapted base are strictly separated.
Only the declarative bindings tie a link between both
name spaces.

The concrete language OT/J does not require access
to source code of base classes because the adapts rela-
tion is realized using byte code transformation at load
time. Emphasis in separate processing lies on a strict
separation between a Team and the adapted base. We
are currently elaborating the type system for OT/J in
a formal calculus which will show locality of matters of
type safety. Adding contracts to Object Teams is an
area of future work which will set the foundation for
modular reasoning.

Difference modules. Teams are difference modules
in two ways: by using Team inheritance, a Team may
enhance its super-Team. Using the adapts relation, a
Team modifies an existing base. Team inheritance is
a static property, while adaptation is a dynamic, in-
stance based relation. Adaptation is decomposed into
smaller difference modules: role classes, methods bind-
ings, parameter mappings. For both kinds of relations,
inheritance and adaptation, a Team is a module which
groups a set of smaller difference modules. It should
be emphasized that this may be the major contribu-
tion of Object Teams: to allow for modular differential
designs.

Note that Object Teams require no new technique
for expression an expected interface: abstractness of
role classes and methods suffices to indicate that some
functionality is still missing. Implementation for ab-
stract methods may be provided either by a sub-Team
or by forwarding to a base method (callout binding).
This provides a balance between explicitness and flex-
ibility.

Instances. Both new modules, Teams and role,
make extensive use of instantiation. Role instances
are contained in a Team instance. In fact, the type
of a role object is associated to the surrounding Team
instance. So in some some situations a role type is
denoted explicitly as someTeamInstance.RoleClass.
This technique is borrowed from family polymorphism
[4].

Adaptation and the lifting translation are under the
responsibility of a Team instance. This abstraction is
powerful enough to even address the problem of aspect
ordering, which is difficult to express in other aspect
oriented languages.

Protection. Instance based typing (see the previous
item) was originally introduced just for type safety in
the context of covariant overriding of role classes. The
same concept can now be pushed to its full consequence
which allows different levels of protection.

The most flexible level allows externalized roles, i.e.,
role objects that are referenced outside their Team.
Here instance based typing only prevents role objects
from different Teams to be mixed. Apart from this
restriction, an externalized role object can be accessed
just like a regular object.

We are currently elaborating a concept of opaque
roles, which is to say, that a role object cannot be ac-
cessed by its role interface, but only by widening to a
non-role type. This requires, that the two slices of the
role object don’t interfere, i.e., execution of non-role
methods may never access any role attributes or role
methods (which could happen by overriding non-role
methods within the role class). By prohibiting casts to
the original role type it is thus possible to use role ob-
jects outside the Team without allowing access to any
specific role properties. By opaque roles, we hope to
provide a useful balance between strict, provable pro-
tection combined with the flexibility to point into the
state of a Team.

A similar concept of object-slices is already present
in the model by the role-base relation: roles may typ-
ically encapsulate specific enhancements, which may
be kept private to the Team, while different contexts
(Teams or non-Team contexts) may share the underly-
ing base objects.

Finally, confined objects — designed along the lines
of confined types [19] and Universes [13] — are guaran-
teed to be accessible only within the enclosing Team in-
stance. The type system will disallow confined objects
to ever escape the context of their Team. More specif-
ically, confined objects cannot be widened to non-role
types. Previous works have pointed out, that tradi-
tional object oriented models lack a natural border for
restricting the scope of references. A Team instance
provides exactly this natural border of confinement.



We believe the three options of externalized, opaque
and confined role objects to suffice for real world tasks
of protection. For that reason we do not offer a fur-
ther alternative: read-only references. If really needed
such situations can be crafted by non-role classes im-
plementing the read-only access. Roles will then in-
herit those read-only slices and add the modification
slice to each object.

3.3 Composition.

Here we investigate which of the elementary kinds of
composition can be found in Object Teams.

Acquisition. While it is not surprising that Team
inheritance makes available all roles from the super-
Team, the role-base link deserves a closer look. Object
Teams require an explicit callout binding for every base
method that shall be accessible from a role. Due to the
declarative style of binding we consider this an accept-
able burden. By making acquisition of base features
explicit, name spaces are clearly separated and depen-
dencies are minimized.

Overriding. Along the lines of the previous item,
overriding is implicit along Team inheritance, includ-
ing the possibility to override a role class. By default,
role methods do not override base methods. Callout
bindings are defined as mere forwarding without late
binding of self. A role method may still override a
base method by an explicit callin binding. Again the
conservative default and a more flexible option help to
decouple role and base without loosing any expressive
power.

Subtyping. Object Teams introduce implicit inher-
itance, which does not define a sub-type relation be-
tween roles. Yet a Team is a sub-type of its super-
Team. The concept of translation polymorphism also
relates to sub-typing. A role class and its associated
base class together define an imaginary tuple type.
This compound type is conform to both element types.
Each facet of this type can be translated to the other
facet.

Polymorphism. The kind of polymorphism inves-
tigated in [15] is approximated by an abstract Team
without role bindings. Such Team can be bound to
(almost) arbitrary sets of base classes. In this respect
Caesar [12], which is otherwise quite similar to Object
Teams, goes one step further by introducing collabora-
tion interfaces, by which even bindings can be re-used
against a polymorphic hierarchie of collaborations.

Modules larger than classes. Clearly, Teams ful-
fill the request for modules larger than classes. They
come with useful semantics including instantiation, re-
finement and containment of role objects.

Method interception. Callin bindings unify the
concepts of selective overriding and method intercep-
tion. The modifiers before, after, replace relate this
inheritance in CLOS and advice weaving in AspectJ.

Adaptation. We have already pointed out that a
Team is a module for a complex set of adaptations.
Just like in prototype based languages, adaptations are
first-class. Unlike those languages, a Team may hide
details of adapting many classes, methods, parameter
lists. Teams furthermore introduce the concept of run-
time activation and deactivation which is also more
modular than in the few other approaches which fea-
ture runtime aspect activation (e.g., [8]).

Granularity. Composing role and base classes can
be controlled with much greater detail than inheritance
and import in standard object oriented languages. Ev-
erything that is not mentioned in a method binding is
not visible. It is even possible, to import (via callout
binding) a base method, or to intercept a base method
(via callin binding), with only a subset of its parame-
ters.

At the bottom line, Object Teams are prepared to
compose modules with mismatching interfaces. By rea-
sonable defaults and the option of very fine grained
control adaptation can be defined in a succinct and
well-structured way. A Team groups a set of adap-
tations to a consistent unit. The detailed control
over module composition is achieved by only these
programmer-visible concepts: Teams and roles, im-
plicit inheritance and playedBy relation, callout and
callin method bindings.

3.4 Interaction of basic concepts

The analysis in the previous sections has identified
some elementary concepts of modules and module com-
position in Object Teams. The same kind of analy-
sis can be performed regarding the host language into
which the new features are integrated. This level of
granularity facilitates precise statements about the in-
teractions amoung the given concepts.

For this purpose, a Concern Interaction Matrix [7]
is to be constructed. Within this matrix, each pair of
concepts shall be analyzed to see whether their combi-
nation behaves well without further effort, or — what
tends to be the normal case — define the constraints
under which these concepts can be combined. Thus the
detailed language semantics are completed following
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Figure 2: Composing Teams, roles and bases

the “principle of least surprise” [11]: the programmer
should not be surprised by unexpected behavior when
applying language concepts in an un-foreseen manner.

Due to the prevalence of concept interactions, it is
also of high value to document which concepts do not
interact, and why this is so.

We will give a few examples on what needs to be
done to avoid ill-behaved programs.

3.4.1 Large scale structures

Teams are an answer to the quest for modules larger
than classes. In order to scale for large systems it
is desirable to create decomposition hierarchies using
Teams. The different kinds of structures that can be
built follows from an analysis of which properties can
be combined in one class.

Three combinations are meaningful for which the se-
mantics shall be discussed (cf. Fig. 2).

base=team. A base class which is adapted by a role
class may in turn be a Team class. By this technique
a special form of hierarchical structure can be con-
structed which is illustrated in Fig. 2(a). This com-
bination is possible without further precaution, be-
cause from a client perspective the intermediate Team
LowerTeam behaves like a regular object. It serves as
a facade to its contained roles, which do not directly
participate in the upper level role-base binding.

role=team. A strong form of nesting can be
achieved by implementing roles of a larger Team as
contained Teams (Fig. 2(b)). At a first glance this

looks unproblematic, too. Only when measuring this
against Team activation we find a possibility of incon-
sistency: If only a contained Team is activated, while
the outer Team is inactive, a callin binding might di-
rect the control flow into the inner Team. This Team as
a role of the outer Team is not activated, i.e., its callin
bindings do not override corresponding base methods.
This might produce unexpected behavior, but it is
not strictly wrong to execute role methods while the
surrounding Team is inactive. We have seen situa-
tions where this actually makes sense. So we only
give the advice that nested Teams should redefine the
activate() method to consistently propagate activa-
tion to inner and outer Teams.

base=role. Using a role object as a base is only pos-
sible under the following constraint: the upper level
Team must have an immutable (final) reference to the
Team who’s role should be used as base. Then it is
possible to declare:

class TopRolel playedBy thatTeam.InnerRolel

Of course special considerations regarding activation
are again needed. This style of composition is useful
for realizing layered designs (Fig. 2(c)).

3.4.2 More examples for concept interactions

Also interactions like the following can be found sys-
tematically by investigating each pair of concepts.

Exceptions. The rules on method binding must de-
fine constraints regarding declared exceptions of role
and base methods. Another interaction is less obvious:
the language introduces a new block statement

within(teamlnst) {
stmts;

which expresses that for the given block of statements
the Team teamInst should be activated. The block
structure shall guarantee that no-one forgets to deac-
tivate a Team after use. In a language with exceptions
this must be translated into:

teamlnst. activate ();

try {
stmts;

} finally {
teamlnst. deactivate ();
}

Garbage collection. The playedBy relation estab-
lishes an invisible link from role to base. The lifting
translation requires to store existing base-role map-
pings in a cache. The references introduced by both



mechanisms must not interfere with garbage collection.
It is correct for a role-base link to prevent deletion of
a base object, the lifting cache must allow to jointly
delete a role-base pair. This calls for a realization of
this cache as a WeakHashMap.

Visibility. Acquiring methods by callout bindings
has the intention of creating a relation that is robust
and yet fairly tight. Java defines visibility only con-
cerning client usage and inheritance. In order to al-
low unanticipated enhancements our role-base bind-
ing establishes special priviledges overriding even the
private modifier. For organizational reasons this ac-
cess may need to be disallowed which can be done by
sealing a (base) package.

3.5 Challenging orthogonality

We have reported only about a small selection of con-
cept interactions. In some cases orthogonality can in-
deed be established by skillful translation. In other
cases a few constraints suffice to simply disallow pro-
grams for which no reasonable semantics could be de-
fined.

The full Concern Interaction Matrix for Object
Teams is work in progress at the time of this writing.
The difficulty lies in identifying suitable elementary
concpts. If we would ask how, e.g., inheritance inter-
acts with instantiation, the question were not concrete
enough to be answered in a complete way. By con-
trast, the Concern Interaction Matrix of elementary
concepts will systematically eliminate any ambiguities
from a language definition. We can already see how
the work towards this Matrix helps to elaborate and
consolidate Object Teams.

4 Java as a host language

When using Java as the host language for Object
Teams, we had to adapt to some peculiarities of Java.
In four areas Java hindered a clean design.

Java’s notion of static members does not fit the way
we would like to define static Teams: a static Team
should be effective without instantiation and activa-
tion. Thus, it would be most suitable to use the Team
class as a (singleton or meta) object. Unfortunately,
this is not what static members in Java allow, since
dynamic binding does not apply to them.

Owverloading unnecessarily complicates declarative
method bindings, since names do not suffice to refer
to methods. The robustness under evolution achieved
by Object Teams is impaired by overloading, since ad-
dition of a method may render an existing binding am-
biguous.

Java’s access modifiers are unfortunate bundles of
export scopes. It is neither satisfactory to redefine
their semantics for Object Teams nor to add new ex-
port constructs from scratch.

Constructors are not a good technique when it comes
to different initialization strategies. Constructor over-
loading is a very poor workaround. This affects Object
Teams in the context of role instance creation which
happens implicitly during lifting. Also explicit role cre-
ation is possible. Named initialization methods would
integrate much smoother with both styles of method
bindings, too.

Upcoming generics in Java yield a new challenge in
language design: virtual classes are known to have sim-
ilar expressiveness as generics. For many applications
a Team with a fully abstract role is much more appro-
priate than a generic Team. Still for non-Team classes
genericity will be a valuable addition. It remains to be
shown how these two worlds combine most elegantly.

Many other features of Java are fairly neutral to our
additions. The technique of translation into byte code
nicely supports adaptation of base classes without see-
ing their source code. Surprisingly, even the byte code
is so tightly coupled to the Java type system, that over-
riding role classes could not easily be reflected, but
plenty of casts are needed in the byte code generated
by the OT/J compiler.

5 The road ahead

Following Hoare [9], language design should always fo-
cus on “most difficult aspects of a programmer’s task”.
To some extent programming is not even the most dif-
ficult task of a programmer. Communication — both
with peers as well as with customers — tends to be
notably more difficult. Of course, programming lan-
guages should also be seen as a means for communica-
tion. From that it should always be kept in mind that
readability of programs is much more important than
that they are easy to write. Evaluation case studies
for Object Teams are planned, which will among other
goals assess whether Object Teams provide a suitable
basis for communication.

That said, we see greater problems in overall man-
agement of complexity (under evolution) than in par-
ticular things that could not be expressed by todays
state-of-the-art language features. A severe problem
remains in the fact, that usually only a small selection
of such features is at hand, since language features can-
not (easily) be composed by application programmers.
We intentionally avoid the discussion about meta pro-
gramming in this place.

Object Teams give an example of the expressive-
ness of a programming language that can be achieved
mainly by carefully combining existing concepts and



features. It should be emphasized that combination
happens an the level of techniques as well as on the
level of motivations. Evolution, organization and secu-
rity are very different aspects of programming. Still all
of these benefit from encapsulating roles in a Team.
Yet, each motivation contributes a slightly different
view. As a result a Team is defined by a directory, a
set of interfaces and provides a boundary around role
instances. These three aspects of a Team are neither
identical nor orthogonal. The concept “Team” is a
careful superposition of different views on the concepts
of modules and their composition.

Some highlights, which Object Teams bring to-
gether, are modules larger than classes, modular
aspect-oriented programming including dynamic acti-
vation, role objects, integration oriented software de-
velopment, security, type safety and explicit interfaces
including expected interfaces. None of these are actu-
ally new any more. From all the techniques involved,
perhaps the lifting translation has been first imple-
mented in precursors of Object Teams [5].

The programming model of Object Teams has been
incarnated in these host languages: Lua, Ruby, Java,
C++. Each instance has given different stimulus to
the design. Still it is difficult to tell, what would be
the ideal core language to build Object Team upon.
Judging by intuition, Eiffel might be a very good can-
didate, but the complexity of the matter disallows any
judgment without a careful analysis of concepts and
their interactions.
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