
ObjectTeams/Java Language Definition — version 1.0

Bericht-Nr. 2007/03

Stephan Herrmann
stephan@cs.tu-berlin.de

Christine Hundt
resix@cs.tu-berlin.de

Marco Mosconi
mosconi@cs.tu-berlin.de

ISSN 1436-9915

ObjectTeams/Java Language Definition — version 1.0

Stephan Herrmann, Christine Hundt, Marco Mosconi

<www.objectteams.org>

i

Otjld v1.0 Contents

Contents

Introduction/Motivation vii

0. About this Document ix

0.1. Purpose(s) of this document . ix

0.2. Text structure . ix

0.3. Compiler messages . x

0.4. Versions . x

0.5. Publishing . x

1. Teams and Roles 1

1.1. Team classes . 1

1.2. Role classes and objects . 1

1.2.1. Modifiers for roles . 2

1.2.2. Externalized roles . 3

1.2.3. Protected roles . 7

1.2.4. Type tests and casts . 7

1.2.5. File structure . 7

1.3. Acquisition and implicit inheritance of role classes 9

1.3.1. Acquisition and implicit inheritance of role classes 9

1.3.2. Regular role inheritance . 13

1.4. Name clashes . 13

1.5. Team and role nesting . 14

2. Role Binding 17

2.1. playedBy relation . 17

2.1.1. Binding interfaces . 18

2.1.2. Legal base classes . 18

2.2. Lowering . 20

2.3. Lifting . 21

2.3.1. Implicit role creation . 22

2.3.2. Declared lifting . 23

TR 2007/03, TU-Berlin iii

Contents OTJLD v1.0

2.3.3. Smart lifting . 24

2.3.4. Binding ambiguities . 26

2.4. Explicit role creation . 28

2.4.1. Role creation via a lifting constructor 28

2.4.2. Role creation via a regular constructor 29

2.4.3. Role creation in the presence of smart lifting 30

2.5. Abstract Roles . 31

2.6. Explicit base references . 31

2.7. Advanced structures . 32

3. Callout Binding 35

3.1. Callout method binding . 35

3.2. Callout parameter mapping . 37

3.3. Lifting and lowering . 39

3.4. Overriding access restrictions . 40

3.5. Callout to field . 41

4. Callin Binding 43

4.1. Callin method binding . 43

4.2. Callin modifiers (before, after, replace) . 44

4.3. Base calls . 45

4.4. Callin parameter mapping . 46

4.5. Lifting and lowering . 47

4.6. Overriding access restrictions . 48

4.7. Callin binding with static methods . 48

4.8. Callin precedence . 49

5. Team Activation 53

5.1. Effect of team activation . 53

5.1.1. Global vs. thread local team activation 53

5.1.2. Effect on garbage collection . 53

5.2. Explicit team activation . 53

5.3. Implicit team activation . 54

iv TR 2007/03, TU-Berlin

Otjld v1.0 Contents

5.4. Guard predicates . 55

5.4.1. Regular guards . 55

5.4.2. Base guards . 56

5.4.3. Multiple guards . 58

5.5. Unanticipated team activation . 59

6. Object Teams API 61

6.1. Reflection . 61

6.2. Other API Elements . 63

7. Role Encapsulation 65

7.1. Opaque roles . 65

7.2. Confined roles . 65

8. Join Point Queries 67

8.1. Join point queries . 67

8.2. Query expressions . 67

8.3. OT/J meta model . 67

9. Value Dependent Classes 69

9.1. Defining classes with value parameters . 69

9.2. Using classes with value parameters . 69

9.2.1. Parameter substitution . 69

9.2.2. Type conformance . 70

9.3. Restrictions and limitations . 70

A. ObjectTeams/Java Syntax 71

A.0. Keywords . 71

A.0.1. Scoped keywords . 71

A.0.2. Inheriting scoped keywords . 71

A.0.3. Internal names . 71

A.1. Class definitions . 71

A.2. Modifiers . 72

A.3. Method bindings . 72

TR 2007/03, TU-Berlin v

Contents OTJLD v1.0

A.4. Parameter mappings . 73

A.5. Statements . 74

A.6. Types . 74

A.7. Guard predicates . 75

A.8. Precedence declaration . 75

A.9. Value dependent types . 75

A.10.Packages and imports . 75

vi TR 2007/03, TU-Berlin

Otjld v1.0 Introduction

Figure 1: Essential concepts of ObjectTeams/Java

Introduction

ObjectTeams/Java (OT/J) is an extension to the Java programming language, realizing the
concepts of the programming model Object Teams. OT/J introduces aspect-oriented and
collaboration/role-based concepts which are smoothly integrated with the object-oriented con-
cepts like inheritance and polymorphism.

Object Teams promotes the notion of collaborations as modules for interacting roles. It does
so by introducing two new kinds of modules: teams (§ 1.1.) as higher-order modules for
contained roles (§ 1.2.) (see MyTeam and its roles Role1 and Role2 in Fig. 1).

A playedBy relationship (§ 2.1.) binds a role class to a base class, which will be reflected
by run-time links between pairs of role and base instances. The main purpose of creating a
role-to-base connection is to create a channel for specific communication, which is established
by two kinds of method bindings.

A callin method binding (§ 4.) intercepts the control flow at a method of the base entity
and redirects it to a role method. Looking at Fig. 1, calls to method2 will be intercepted,
causing an invocation of roleMeth2. In order to ensure that the effect is purely additive, one
of the modifiers before or after can be used. When specifying a replace callin binding,
this has approximately the same effect as overriding a method in the context of inheritance.
Using the concept of callin bindings, roles unify instance-based inheritance with method call
interception as it is used in aspect-oriented programming.

Conversely, a callout method binding (§ 3.) simply forwards a method (roleMeth1) from
a role instance to its player, the base instance (method1). Callout bindings per se are rather
unspectacular, but a callout binding may support decapsulation, a term we coined for the
inverse of encapsulation. This means that a callout binding can – within limits – access
protected or even private members of the corresponding base class (note the “holes” in the
border of the base package and its class C2). Decapsulation is also supported for the playedBy
clause at class level, so that a role may be attached to an otherwise inaccessible class (like a
package-visible class or a private inner class).

Several means exist to control when a callin binding is actually effective, i.e, whether or not
the base control flow should be intercepted. The most elegant technique is to activate or
deactivate a given team instance (see § 5.), which has the effect that all callin bindings of all
contained roles are enabled or disabled in one step. In Fig. 1, activation is symbolized by the
switch at the top of MyTeam.

TR 2007/03, TU-Berlin vii

Introduction OTJLD v1.0

viii TR 2007/03, TU-Berlin

Otjld v1.0 § 0.

About this Document § 0.B

Levels of this document

Terms, concepts Each chapter of this document starts with a short synopsis of concepts
covered by the chapter (like this).

Definition The actual definition is given in small numbered paragraphs.

Examples Examples and accompanying explanations will be interspersed into the definition.

Purpose(s) of this document § 0.1.B

This document defines the ObjectTeams/Java programming language (OT/J). The main goals
were to create a precise and complete reference for this language. Didactical considerations
had lower priorities, which means that this document is not designed as an introductory
tutorial. Still, we advise programmers learning the OT/J language, to consult this document
whenever a compiler error message is not perfectly clear to them (see § 0.3.).

Text structure § 0.2.B

Each chapter of this document starts with a short synopsis of concepts covered by the chapter
(see above).

→ Syntax § A

(a) Paragraphs
The actual definition is structured into small paragraphs for easy referral.

(b) Syntax Links
Links to the syntax precede definitions whenever new syntax is introduced.

Interspersed you will find some example program listings. Examples are typeset in a box:
1 p u b l i c team c l a s s MyTeamA {
2 . . .
3 }

Explanations for examples look like the following:

Effects:

• Lines 1-3 show a minimal OT/J program, which should not cause any headache.

Examples are given for illustration only.
Additional paragraphs like "Language implementation", or "open issues" provide some back-
ground information which is not necessary for understanding the definition, which might how-
ever, help to understand why things are the way they are and what other things might be
added to the language in the future.

TR 2007/03, TU-Berlin ix

§ 0.4. 0. ABOUT THIS DOCUMENT OTJLD v1.0

Compiler messages§ 0.3.
Error messages given by the Object Teams compiler refer to this definition whenever appropri-
ate. This way it should be easy to find out, why the compiler rejected your program. Please
make sure you are using a language definition whose version matches the version of your
compiler.

Versions§ 0.4.
The structure of this document has changed between versions 0.6.1 and 0.7 of this document.
This change reflects the transition from our first compiler for OT/J (called otc) and the OTDT
(Object Teams Development Tooling) plugin for Eclipse.
Starting with the OTDT v0.7.x, the major and minor number of the tool correspond to
the major and minor version number of the OTJLD (this document), ie., the OTDT v1.0.x
implements the language as defined in the OTJLD v1.0.

Publishing§ 0.5.
The sources of this language definition are maintained in a target-independent XML format.
Three different versions are generated from these sources, using XSLT:

• Online version1 (XHTML)

• Tooling version (XHTML – directly accessible from inside the OTDT)

• Print version (LaTeX/PDF – this document)

1http://www.objectteams.org/def/

x TR 2007/03, TU-Berlin

http://www.objectteams.org/def/
http://www.objectteams.org/def/

Otjld v1.0 § 1.

Teams and Roles § 1.B

Fundamental concepts of Teams
Teams and Roles Classes that are defined with the modifier team are called team classes, or

teams for short.
Direct inner classes of a team are called role classes, or roles for short.

Role inheritance Inheritance between teams introduces a special inheritance relationship be-
tween their contained roles. The rules of this implicit inheritance are given below
(§ 1.3.1.).

Externalized role Roles are generally confined to the context of their enclosing team instance.
Subject to specific restrictions, a role may be passed outside its team using the concept
of externalized roles (§ 1.2.2.).

Team classes § 1.1.B

→ Syntax § A.1.1
A class declared with the modifier team is a team class (or team for short).

1 p u b l i c team class MyTeamA {
2 . . .
3 }

Teams are meant as containers for roles, which are defined in the following paragraphs.
1 p u b l i c team c l a s s MyTeamA {
2 p u b l i c class MyRole
3 . . .
4 }
5 }

Teams introduce a new variant of inheritance for contained role classes (see § 1.3.1. below).
Other properties of teams, which are defined in later sections, are:

• Team activation (§ 5.)

• Abstractness and instantiation (§ 2.5.)

• Declared lifting in team methods (§ 2.3.2.)

• Reflective functions defined in org.objectteams.Team (§ 6.1.)

Apart from these differences, team classes are regular Java classes with methods and fields,
whose instances are regular Java objects.

Role classes and objects § 1.2.B

Each direct inner class of a team is a role class. Just like inner classes, each instance of a role
class has an implicit reference to its enclosing team instance. This reference is immutable.
Within the implementation of a role it can be accessed by qualifying the identifier this with
the name of the team class, as in:

TR 2007/03, TU-Berlin 1

§ 1.2.1. 1. TEAMS AND ROLES OTJLD v1.0

1 p u b l i c team c l a s s MyTeamA {
2 p u b l i c class MyRole {
3 p u b l i c v o i d p r i n t () { System . out . p r i n t l n ("Team : "+ MyTeamA.this) ; }
4 }
5 }

Creation of role instances is further restricted as defined in § 2.4.. Teams can also define
role interfaces just like role classes. With respect to role specific properties a role interface is
treated like a fully abstract class.

Modifiers for roles§ 1.2.1.

Member classes of a team cannot be static. Also the use of access modifiers for roles
is restricted and modifiers have different (stronger) semantics than for regular classes (see
below). With respect to accessibility a team acts mainly like a package regarding its roles.

(a) Role class protection

A role class must have exactly one of the access modifiers public or protected.
This rule does not affect the class modifiers abstract, final and strictfp.

(b) protected role classes

A protected role can only be accessed from within the enclosing team or any of its
sub-teams. The actual border of encapsulation is the enclosing team instance. The
rules for protected roles are given in § 1.2.3. below.

(c) public role classes

Only public roles can ever be accessed outside their enclosing team. Accessing a
role outside the enclosing team instance is governed by the rules of externalized
roles, to be defined next (§ 1.2.2.).

(d) abstract role classes

A role class has to be marked abstract if any of its methods is not effective.
The methods of a role class comprise direct methods and methods acquired by
inheritance. In addition to regular inheritance a role class may acquire methods also
via implicit inheritance (§ 1.3.1.).
A method may become effective by either:
• implementation (i.e., a regular method body), or
• a callout binding (see § 3.).

§ 2.5. discusses under which circumstances abstract roles force the enclosing team
to be abstract, too.

(e) Role features

Access modifiers for members of roles have some special interpretation:
1. A private member is also visible in any implicit sub role (see implicit inheritance

§ 1.3.1.(c)).
In contrast to inner classes in Java, private members of a role are not visible to
the enclosing team.

2 TR 2007/03, TU-Berlin

Otjld v1.0 1.2. Role classes and objects § 1.2.1.

2. The default visibility of role members restricts access to the current class and
its sub-classes (explicit and implicit).

3. protected role members can only be accessed from the enclosing team or via
callin (§ 4.).

4. public role members grant unrestricted access.

Only public members can ever be accessed via an externalized role (§ 1.2.2.).

(f) Static role methods

In contrast to inner classes in pure Java, a role class may indeed define static meth-
ods. A static role method requires no role instance but it still requires a team
instance in scope. Static role methods can be called:

• from the enclosing team,
• via callin (see § 4.7.).

Within a static role method the syntax MyTeam.this is available for accessing the
enclosing team instance.

(g) No static initializers

A static field of a role class must not have a non-constant initialization expression.
Static initialization blocks are already prohibited for inner classes by Java (see JLS
§8.1.22).

Note:
Static initialization generally provides a means for performing initialization code

prior to instantiation, i.e., at class-loading time. Before any role can be created
already two levels of initialization are performed: (1) The (outer most) enclosing
team class performs static initializations when it is loaded. (2) Any enclosing team
executes its constructor when it is instantiated. It should be possible to allocate any
early initialization to either of these two phases instead of using static role initializers.

Externalized roles § 1.2.2.B

→ Syntax § A.9.2
Normally, a team encapsulates its role against unwanted access from the outside. If roles are
visible outside their enclosing team instance we speak of externalized roles.
Externalized roles are subject to specific typing rules in order to ensure, that role instances
from different team instances cannot be mixed in inconsistent ways. In the presence of implicit
inheritance (§ 1.3.1.) inconsistencies could otherwise occur, which lead to typing errors that
could only be detected at run-time. Externalized roles use the theory of "virtual classes"
[1] (see p. 16), or more specifically "family polymorphism" [2] (see p. 16), in order to achieve
the desired type safety. These theories use special forms of dependent types. Externalized
roles have types that depend on a team instance.
§ 1.2.3. deduces even stronger forms of encapsulation from the rules about externalized roles.

(a) Visibility

Only instances of a public role class can ever be externalized.
2http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#262890

TR 2007/03, TU-Berlin 3

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#262890
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#262890
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#262890

§ 1.2.2. 1. TEAMS AND ROLES OTJLD v1.0

(b) Declaration with anchored type

Outside a team role types are legal only if denoted relative to an existing team
instance (further on called "anchored types"). The syntax is:

final MyTeam myTeam = expression ;
RoleClass<@myTeam> r o l e = expression ;

The syntax Type<@anchor> is a special case of a parameterized type, more specif-
ically a value dependent type (§ 9.). The type argument (i.e., the expression after
the at-sign) can be a simple name or a path. It must refer to an instance of a team
class. The role type is said to be anchored to this team instance.
The type-part of this syntax (in front of the angle brackets) must be the simple
name of a role type directly contained in the given team (including roles that are
acquired by implicit inheritance).

Note:
Previous versions of the OTJLD used a different syntax for anchored types,

where the role type was prefixed with the anchor expression, separated by a dot
(anchor.Type, see → Syntax § A.6.3). A compiler may still support that path
syntax but it should be flagged as being deprecated.

(c) Immutable anchor

Anchoring the type of an externalized role to a team instance requires the team to be
referenced by a variable which is marked final (i.e., immutable). The type anchor
can be a path v.f1.f2... where v is any final variable and f1 ... are final fields.

(d) Implicit type anchors

The current team instance can be used as a default anchor for role types:
1. In non-static team level methods role types are by default interpreted as anchored

to this (referring to the team instance). I.e., the following two declarations
express the same:

p u b l i c RoleX getRoleX (RoleY r) { stmts }
p u b l i c RoleX<@this> getRoleX (RoleY<@this> r) { stmts }

2. In analogy, role methods use the enclosing team instance as the default anchor
for any role types.

Note, that this and Outer.this are always final.
The compiler uses the pseudo identifier tthis to denote such implicit type anchors
in error messages.

(e) Conformance

Conformance between two types RoleX<@teamA> and RoleY<@teamB> not only re-
quires the role types to be compatible, but also the team instances to be provably
the same object. The compiler must be able to statically analyze anchor identity.

(f) Substitutions for type anchors

Only two substitutions are considered for determining team identity:

4 TR 2007/03, TU-Berlin

Otjld v1.0 1.2. Role classes and objects § 1.2.2.

1. For type checking the application of team methods, this is substituted by
the actual call target. For role methods a reference of the form Outer.this is
substituted by the enclosing instance of the call target.

2. Assignments from a final identifier to another final identifier are transitively
followed, i.e., if t1, t2 are final, after an assignment t1=t2 the types R<@t1>
and R<@t2> are considered identical. Otherwise R<@t1> and R<@t2> are incom-
mensurable.
Attaching an actual parameter to a formal parameter in a method call is also
considered as an assignment with respect to this rule.

(g) Legal contexts

Anchored types for externalized roles may be used in the following contexts:

1. Declaration of an attribute
2. Declaration of a local variable
3. Declaration of a parameter or result type of a method or constructor
4. In the playedBy clause of a role class (see § 2.1.).

It is not legal to inherit from an anchored type, since this would require membership
of the referenced team instance, which can only be achieved by class nesting.

Note:
Item 4. — within the given restriction — admits the case where the same class

is a role of one team and the base class for the role of another team. Another form
of nesting is defined in § 1.5..

(h) Qualified creation

Creating a role as externalized using the syntax

o u t e r . new Role ()

requires the enclosing instance outer to be declared final. The expression has the
type Role<@outer> following the rules of externalized roles.
The type Role in this expression must be a simple (unqualified) name.

(i) No import

It is neither useful nor legal to import a role type.

Rationale:
Importing a type allows to use the unqualified name in situations that would

otherwise require to use the fully qualified name, i.e., the type prefixed with its
containing package and enclosing class. Roles, however are contained in a team
instance. Outside their team, role types can only be accessed using an anchored
type which uses a team instance to qualify the role type. Relative to this team
anchor, roles are always denoted using their simple name, which makes importing
roles useless.

A static import for a constant declared in a role is, however, legal.

TR 2007/03, TU-Berlin 5

§ 1.2. 1. TEAMS AND ROLES OTJLD v1.0

Listing 1: Example code (Externalized Roles):
1 team c l a s s F l i g h tB o nu s e x t e n d s Bonus {
2 p u b l i c c l a s s S u b s c r i b e r {
3 v o i d c l e a r C r e d i t s () { . . . }
4 }
5 v o i d u n s u b s c r i b e (S u b s c r i b e r s u b s c r) { . . . }
6 }

7 c l a s s C l e a r A c t i o n e x t e n d s Act ion {
8 final F l i g h tB o nu s c o n t e x t ;
9 Subscriber<@context> s u b s c r i b e r ;

10 C l e a r A c t i o n (final F l i g h tB o nu s bonus , Subscriber<@bonus> s u b s c r) {
11 c o n t e x t = bonus ; // unique assignment to ’context’
12 s u b s c r i b e r = s u b s c r ;
13 }
14 v o i d a c t i o n P e r f o r m e d () {
15 s u b s c r i b e r . c l e a r C r e d i t s () ;
16 }
17 p r o t e c t e d v o i d f i n a l i z e () {
18 c o n t e x t . u n s u b s c r i b e (s u b s c r i b e r) ;
19 }
20 }

Effects:

• Lines 1-6 show a terse extract of a published example [NODe02]. Here passengers can
be subscribers in a flight bonus program.

• Lines 7-20 show a sub-class of Action which is used to associate the action of resetting
a subscriber’s credits to a button or similar element in an application’s GUI.

• Attribute context (line 8) and parameter bonus (line 10) serve as anchor for the type
of externalized roles.

• Attribute subscriber (line 9) and parameter subscr (line 10) store a Subscriber role
outside the FlightBonus team.

• In order to type-check the assignment in line 12, the compiler has to ensure that the
types of LHS and RHS are anchored to the same team instance. This can be verified by
checking that both anchors are indeed final and prior to the role assignment a team
assignment has taken place (line 11).
Note, that the Java rules for definite assignments to final variables ensure that exactly
one assignment to a variable occurs prior to its use as type anchor. No further checks
are needed.

• It is now legal to store this role reference and use it at some later point in time, e.g.,
for invoking method clearCredits (line 15). This method call is also an example for
implicit team activation (§ 5.3.(b)).

• Line 18 demonstrates how an externalized role can be passed to a team level method.
The signature of unsubscribe is for this call expanded to
void unsubscribe(Subscriber<@context> subscr)
(by substituting the call target context for this). This proves identical types for actual
and formal parameters.

6 TR 2007/03, TU-Berlin

Otjld v1.0 1.2. Role classes and objects § 1.2.3.

Protected roles § 1.2.3.B

Roles can only be public or protected. A protected role is encapsulated by its enclosing
team instance. This is enforced by these rules:

(a) Importing role classes

This rule is superseded by § 1.2.2.(i)

(b) Qualified role types

The name of a protected role class may never be used qualified, neither prefixed by
its enclosing type nor parameterized by a variable as type anchor (cf. § 1.2.2.(a)).

(c) Mixing qualified and unqualified types

An externalized role type is never compatible to an unqualified role type, except for
the substitutions in § 1.2.2.(f), where an explicit anchor can be matched with the
implicit anchor this.

Rules (a) and (b) ensure that the name of a protected role class cannot be used outside
the lexical scope of its enclosing team. Rule (c) ensures that team methods containing
unqualified role types in their signature cannot be invoked on a team other than the current
team. Accordingly, for role methods the team context must be the enclosing team instance.

(d) Levels of encapsulation

Since protected role types can not be used for externalization, instances of these
types are already quite effectively encapsulated by their enclosing team. Based on
this concept, encapsulation for protected roles can be made even stricter by the rules
of role confinement. On the contrary, even protected roles can be externalized as
opaque roles which still expose (almost) no information. Confinement and opaque
roles are subject of § 7..

Type tests and casts § 1.2.4.B

In accordance with § 1.2.2.(e), in ObjectTeams/Java the instanceof operator and type casts
have extended semantics for roles.

(a) instanceof

For role types the instanceof operator yields true only if both components of the
type match: the dynamic role type must be compatible to the given static type, and
also type anchors must be the same instance.

(b) casting

Casts may also fail, if the casted expression is anchored to a different team instance
than the cast type. Such failure is signaled by a org.objectteams.RoleCastException.

File structure § 1.2.5.B

Just like regular inner classes, role classes may be inlined in the source code of the enclosing
team. As an alternative style it is possible to store role classes in separate role files according
to the following rules:

TR 2007/03, TU-Berlin 7

§ 1.2.5. 1. TEAMS AND ROLES OTJLD v1.0

(a) Role directory

In the directory of the team class a new directory is created which has the same
name as the team without the .java suffix.

(b) Role files

Role classes are stored in this directory (a). The file names are derived from the role
class name extended by .java.
A role file must contain exactly one top-level type.

(c) package statement

A role class in a role file declares as its package the fully qualified name of the
enclosing team class. The package statement of a role file must use the team
modifier as its first token.

(d) Reference to role file

A team should mention in its javadoc comment each role class which is stored
externally using a @role tag.

(e) Legal types in role files

The type in a role file must not be an enum.

Semantically, there is no difference between inlined role classes and those stored in separate
role files.

Note:
Current Java compilers disallow a type to have the same fully qualified name as a package.

However, the JLS does not seem to make a statement in this respect. In OT/J, a package
and a type are interpreted as being the same team, if both have the same fully qualified name
and both have the team modifier.

[in file org/objectteams/examples/MyTeamA.java :]

Listing 2: Role file example:
1 package org . o b j e c t t e a m s . examples ;
2 p u b l i c team c l a s s MyTeamA {
3 /∗∗
4 ∗ @author Stephan Herrmann
5 ∗ @date 20 .02 . 2007
6 ∗ @ f i l e MyTeamA . j a v a
7 ∗ @role MyRole
8 ∗/
9 . . .

10 }

[in file org/objectteams/examples/MyTeamA/MyRole.java:]

11 team package org.objectteams.examples.MyTeamA;
12 p u b l i c c l a s s MyRole {
13 . . .
14 }

8 TR 2007/03, TU-Berlin

Otjld v1.0 1.3. Acquisition and implicit inheritance of role classes § 1.3.1.

Acquisition and implicit inheritance of role classes § 1.3.B

The predefined class org.objectteams.Team is the root of all team classes. It is implicitly
taken as the super-class of any team class that has no explicit extends clause. If an explicit
extends clause is present in a team, the super-class must again be a team class. Conversely,
any subclass of a team (including org.objectteams.Team) must again be a team. Interface
implementation is not affected by this rule.
Infrastructure provided by class org.objectteams.Team is presented in § 6..

Acquisition and implicit inheritance of role classes § 1.3.1.B

A team acquires all roles from its super-team. This relation is similar to inheritance of inner
classes, but with a few decisive differences as defined next. Two implementation options are
mentioned below, which can be used to realize the special semantics of role acquisition (virtual
classes and copy inheritance).

Listing 3: Implicit role inheritance
1 p u b l i c team c l a s s S {
2 p r o t e c t e d c l a s s R0 { . . . }
3 p r o t e c t e d c l a s s R1 extends R0 {
4 boo l ean ok ;
5 R2 m() { . . . }
6 v o i d n (R2 r) { . . . }
7 }
8 p r o t e c t e d c l a s s R2 { . . . }
9 }

10 p u b l i c team c l a s s T extends S {
11 p r o t e c t e d class R1 {
12 R2 m() {
13 i f (ok) { r e t u r n tsuper .m() ; }
14 e l s e { r e t u r n n u l l ; }
15 }
16 v o i d d o I t () {
17 n (m()) ;
18 }
19 }
20 }

(a) Role class acquisition

A team T which extends a super-team S has one role class T.R corresponding to
each role S.R of the super-team. The new type T.R overrides R for the context of
T and its roles. Acquisition of role classes can either be direct (see (b) below), or it
may involve overriding and implicit inheritance ((c) below).

In the above example (Listing 3) the team S operates on types S.R0, S.R1 and
S.R2, while T operates on types T.R0, T.R1 and T.R2.
(Type references like "S.R0" are actually illegal in source code (§ 1.2.3.(b)). Here
they are used for explanatory purposes only)

(b) Direct role acquisition

Within a sub-team T each role S.R of its super-team S is available by the simple
name R without further declaration.

TR 2007/03, TU-Berlin 9

§ 1.3.1. 1. TEAMS AND ROLES OTJLD v1.0

The role R2 in Listing 3 can be used in the sub-team T (line 12), because this role
type is defined in the super class of the enclosing team.

(c) Overriding and implicit inheritance

If a team contains a role class definition by the same name as a role defined in its
super-team, the new role class overrides the corresponding role from the super-team
and implicitly inherits all of its features. Such relation is established only by name
correspondence.
It is an error to override a role class with an interface or vice versa. A final role
cannot be overridden.
Unlike regular inheritance, constructors are also inherited along implicit inheritance,
and can be overridden just like normal methods.

In Listing 3 R1 in T implicitly inherits all features of R1 in S. This is, because its
enclosing team T extends the team S (line 10) and the role definition uses the same
name R1 (line 11). Hence the attribute ok is available in the method m() in T.R1
(line 13).

(d) Lack of subtyping

Direct acquisition of roles from a super-team and implicit inheritance do not establish
a subtype relation. A role of a given team is never conform (i.e., substitutable) to
any role of any other team. S.R and T.R are always incommensurable.
Note, that this rule is a direct consequence of § 1.2.2.(e).

(e) Dynamic binding of types

Overriding an acquired role by a new role class has the following implication: If an
expression or declaration, which is evaluated on behalf of an instance of team T or
one of its contained roles, refers to a role R, R will always resolve to T.R even if R was
introduced in a super-team of T and even if the specific line of code was inherited
from a super-team or one of its roles. Only the dynamic type of the enclosing
team-instance is used to determine the correct role class (see below for an example).
A special case of dynamically binding role types relates to so-called class literals (see
JLS §15.8.23). Role class literals are covered in § 6.1.(c).
The above is strictly needed only for cases involving implicit inheritance. It may,
however, help intuition, to also consider the directly acquired role T.R in (b) to
override the given role S.R.

In line 17 of Listing 3 the implicitly inherited method n is called with the result of
an invocation of m. Although n was defined in S (thus with argument type S.R2,
see line 6) in the context of T it expects an argument of T.R2. This is correctly
provided by the invocation of m in the context of T.

(f) tsuper

→ Syntax § A.5.4 (TSuperCall)
Super calls along implicit inheritance use the new keyword tsuper. While super is
still available along regular inheritance, a call tsuper.m() selects the version of m
of the corresponding role acquired from the super-team.

3http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530

10 TR 2007/03, TU-Berlin

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530

Otjld v1.0 1.3. Acquisition and implicit inheritance of role classes § 1.3.1.

See § 2.4.2. for tsuper in the context of role constructors.
tsuper can only be used to invoke a corresponding version of the enclosing method
or constructor, i.e., an expression tsuper.m() may only occur within the method
m with both methods having the same signature (see § 2.3.2.(b) for an exception,
where both methods have slightly different signatures).

In Listing 3 the role R1 in team T overrides the implicitly inherited method m() from
S. tsuper.m() calls the overridden method m() from S.R1 (line 13).

(g) Implicitly inheriting super-types

If a role class has an explicit super class (using extends) this relation is inherited
along implicit inheritance.

In Listing 3 the role R1 in T has T.R0 as its implicitly inherited super class, because
the corresponding role in the super-team extends R0 (line 3).

Overriding an implicitly inherited super class is governed by § 1.3.2.(b), below.
The list of implemented interfaces is merged along implicit inheritance.

(h) Preserving visibility

A role class must provide at least as much access as the implicit super role, or
a compile-time error occurs (this is in analogy to JLS §8.4.6.34). Access rights
of methods overridden by implicit inheritance follow the same rules as for normal
overriding.

(i) Dynamic binding of constructors

When creating a role instance using new not only the type to instantiate is bound
dynamically (cf. § 1.3.1.(e)), but also the constructor to invoke is dynamically bound
in accordance to the concrete type.
Within role constructors all this(..) and super(..) calls are bound statically with
respect to explicit inheritance and dynamically with respect to implicit inheritance.
This means the target role name is determined statically, but using that name the
suitable role type is determined using dynamic binding.
See also § 2.5.(a) on using constructors of abstract role classes.

(j) Overriding and compatibility

The rules of JLS §8.4.65 also apply to methods and constructors inherited via implicit
inheritance.

4http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227965
5http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#228745

TR 2007/03, TU-Berlin 11

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227965
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#228745
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227965
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#228745

§ 1.3. 1. TEAMS AND ROLES OTJLD v1.0

Listing 4: Example code (Teams and Roles):
1 p u b l i c team c l a s s MyTeamA {
2 p r o t e c t e d c l a s s MyRole {
3 S t r i n g name ;
4 p u b l i c MyRole (S t r i n g n) { name = n ; }
5 p u b l i c v o i d p r i n t () { System . out . p r i n t l n (" i d="+name) ; }
6 }
7 p r o t e c t e d MyRole g e t R o l e () { r e t u r n new MyRole (" Joe ") ; }
8 }

10 p u b l i c team c l a s s MySubTeam e x t e n d s MyTeamA {
11 p r o t e c t e d c l a s s MyRole {
12 i n t age ;
13 p u b l i c v o i d setAge (i n t a) { age = a ; }
14 p u b l i c v o i d p r i n t () {
15 t s u p e r . p r i n t () ;
16 System . out . p r i n t l n (" age="+age) ;
17 }
18 }
19 p u b l i c v o i d d o i t () {
20 MyRole r = g e t R o l e () ;
21 r . se tAge (2 7) ;
22 r . p r i n t () ;
23 }
24 }
25 . . .
26 MySubTeam myTeam = new MySubTeam () ;
27 myTeam . d o i t () ;

Listing 5: Program output
i d=Joe
age=27

Effects:

• According to § 1.3., MyTeamA inherits from Team (line 1).

• An implicit role inheritance is created for MySubTeam.MyRole (§ 1.3.1.(c); line 11).
If we visualize this special inheritance using a fictitious keyword overrides the compiler
would see a declaration:

p r o t e c t e d c l a s s MyRole overrides MyTeamA.MyRole { . . . }

• Invoking getRole() on myTeam (line 27, 20) creates an instance of MySubTeam.MyRole
because the acquired role MyTeamA.MyRole is overridden by MySubTeam.MyRole follow-
ing the rules of implicit inheritance (cf. § 1.3.1.(e)).

• Overriding of role methods and access to inherited features works as usual.

• As an example for § 1.3.1.(f) see the call tsuper.print() (line 15), which selects the
implementation of MyTeamA.MyRole.print.

12 TR 2007/03, TU-Berlin

Otjld v1.0 1.4. Name clashes § 1.3.2.

Regular role inheritance § 1.3.2.B

In addition to implicit inheritance, roles may also inherit using the standard Java keyword
extends. These restrictions apply:

(a) Super-class restrictions

If the super-class of a role is again a role it must be a direct role of an enclosing
team This rule is simply enforced by disallowing type anchors in the extends clause
(see § 1.2.2.(g)). As an effect, the super-class may never be more deeply nested
than the sub-class.

(b) Inheriting and overriding the extends clause

If a role overrides another role by implicit inheritance, it may change the inherited
extends clause (see § 1.3.1.(g) above) only if the new super-class is a sub-class of
the class in the overridden extends clause. I.e., an implicit sub-role may specialize
the extends clause of its implicit super-role.

(c) Constructors and overridden ’extends’

Each constructor of a role class that overrides the extends clause of its implicit
super-role must invoke a constructor of this newly introduced explicit super-class.
Thus it may not use a tsuper constructor (see § 2.4.2.).

(d) Adding implemented interfaces

implements declarations are additive, i.e., an implicit sub-role may add more inter-
faces but has to implement all interfaces of its implicit super-role, too.

Name clashes § 1.4.B

ObjectTeams/Java restricts Java with respect to handling of conflicting names.

(a) Names of role classes
A role class may not have the same name as a method or field of its enclosing team.
A role class may not shadow another class that is visible in the scope of the enclosing
team.

(b) Names of role methods and fields
Along implicit inheritance, the names of methods or fields may not hide, shadow or
obscure any previously visible name.
(see JLS §8.36, §8.4.6.27, §8.58, §9.39, §9.510 (hiding), §6.3.111 (shadowing), §6.3.212

(obscuring).

6http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40898
7http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227928
8http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#246026
9http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78642

10http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#252566
11http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#34133
12http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#104058

TR 2007/03, TU-Berlin 13

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40898
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227928
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#246026
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78642
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#252566
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#34133
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#104058
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40898
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227928
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#246026
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78642
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#252566
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#34133
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#104058

§ 1.5. 1. TEAMS AND ROLES OTJLD v1.0

Team and role nesting§ 1.5.
Multi-level nesting of classes is restricted only by the following rules.

Listing 6: Example code (Nesting):
1 p u b l i c team c l a s s SuperOuter {
2 p u b l i c team class RoleAndTeam {
3 p r o t e c t e d c l a s s I n n e r R o l e {
4 Runnable foo () { r e t u r n n u l l ; }
5 }
6 }
7 p u b l i c team class RoleAndTeamSub e x t e n d s RoleAndTeam {
8 p r o t e c t e d c l a s s I n n e r R o l e {
9 Runnable foo () { throw new Runt imeExcept ion () ; }

10 }
11 }
12 }
13 p u b l i c team c l a s s OuterTeam e x t e n d s SuperOuter {
14 p u b l i c team class RoleAndTeam {
15 p r o t e c t e d c l a s s I n n e r R o l e {
16 Runnable foo () {
17 c l a s s Lo c a l {} ;
18 r e t u r n new Runnable () { // anonymous class definition
19 p u b l i c v o i d run () {}
20 } ;
21 }
22 // class IllegalMember {}
23 }
24 }
25 p u b l i c team class RoleAndTeamSub {
26 p r o t e c t e d c l a s s I n n e r R o l e {
27 Runnable foo () {
28 RoleAndTeamSub.tsuper . f oo () ;
29 r e t u r n OuterTeam.tsuper . f oo () ;
30 } ;
31 }
32 }
33 }

(a) Nested teams
If a role class is also marked using the team modifier, it may contain roles at the
next level of nesting.

• In the above example (Listing 6) class RoleAndTeam starting in line 14 is a role
of OuterTeam and at the same time a team containing a further role InnerRole

Such a hybrid role-and-team has all properties of both kinds of classes.

(b) Nested classes of roles
A regular role class (ie., not marked as team, see above) may contain local types
(see JLS §14.313 - in the example: class Local), anonymous types (JLS §15.9.514 -
in the example: class defined in lines 18-20) but no member types (JLS §8.515 - in
the example: illegal class IllegalMember).

13http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#247766
14http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#252986
15http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#246026

14 TR 2007/03, TU-Berlin

http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#247766
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#252986
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#246026
http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#247766
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#252986
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#246026

Otjld v1.0 1.5. Team and role nesting § 1.5.

The effect is, that nested types of a regular role cannot be used outside the scope
of their enclosing role.

(c) Prohibition of cycles
A nested team may not extend its own enclosing team.

(d) Prohibition of name clashes
A nested team may inherit roles from multiple sources: its explicit super team and
any of its implicit super classes (roles) from different levels of nesting. If from
different sources a team inherits two or more roles of the same name that are not
related by implicit inheritance, this is an illegal name clash.

(e) Precedence among different supers
If a role inherits the same feature from several super roles (super and tsuper), an
implicitly inherited version always overrides any explicitly inherited feature.
Also implicit inheritance alone may produce several candidate methods inherited by
a role class. This is a result of team-nesting where each level of nesting may add
one more tsuper role. In that case inner team inheritance has precedence over outer
team inheritance.

In the above example (Listing 6) role
OuterTeam.RoleAndTeamSub.InnerRole
has two direct tsuper roles:
OuterTeam.RoleAndTeam.InnerRole and
SuperOuter.RoleAndTeamSub.InnerRole.
Without the method foo defined in
lines 27-30, the enclosing class
OuterTeam.RoleAndTeamSub.InnerRole
would inherit the method foo defined
in line 16, because the inner inheri-
tance between RoleAndTeamSub and
RoleAndTeam binds stronger than the
outer inheritance between OuterTeam
and SuperOuter.

SuperOuter

InnerRole
foo()

RoleAndTeam

InnerRole
foo()

RoleAndTeamSub

OuterTeam

InnerRole
foo()

RoleAndTeam

InnerRole
foo()

RoleAndTeamSub

(f) Qualified tsuper
A role in a nested team may qualify the keyword tsuper (see § 1.3.1.(f) above) by a
type name in order to select among different method version inherited from different
implicit super classes. A term OuterTeam.tsuper evaluates to the super-class, say
SuperOuter, of an enclosing team "OuterTeam". A method call OuterTeam.tsuper.m()
evaluates to the method version within SuperOuter that best corresponds to the
current method containing the tsuper-call.

• In the above example (Listing 6) line 28 is identical to an unqualified tsuper-call
• Line 29 selects a corresponding method from the context of SuperOuter re-

solving to SuperOuter.RoleAndTeamSub.InnerRole.foo()

Language implementation:

Role acquisition and implicit inheritance can be implemented in at least two ways.

TR 2007/03, TU-Berlin 15

§ 1.5. 1. TEAMS AND ROLES OTJLD v1.0

Virtual classes: Each role class is an overridable feature of its enclosing team. Role classes are
resolved by dynamic binding with respect to the enclosing team instance. This implementation
requires multiple-inheritance in order to also allow regular inheritance between roles of the same
team. super and tsuper select parent versions of a method along the two dimensions of
inheritance.
Copy inheritance: Role acquisition from a super-team has the effect of copying a role defini-
tion T.R yielding a new role Tsub.R. All role applications Rx in the role copy refer to Tsub.Rx.
Implicit role inheritance extends a role copy in-place. Only the tsuper construct allows to
access the previous version of a method (i.e. before in-place overriding).

References:

[1] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual classes: A powerful mechanism
in object-oriented programming. In Proceedings OOPSLA 89, ACM SIGPLAN Notices, volume
24, 10, pages 397-406, October 1989.
[2] Erik Ernst. Family Polymorphism. In Proceedings ECOOP 2001, LNCS 2072, pages
303-326, Springer, 2001.

16 TR 2007/03, TU-Berlin

Otjld v1.0 § 2.

Role Binding § 2.B

Roles and base classes
playedBy relation A role can be bound to a class outside the team by a playedBy relation,

which declares that each role instances is associated to a base instances.

Base class The class to which a role is bound (using playedBy) is called its base class. Role
instances may inherit and override features from their base instance, which is declared
using callout (§ 3.) and callin (§ 4.) method bindings.

Bound role Each role class that declares a playedBy relation is called a bound role. The
term bound role may also be used for the instances of such a class.

Lifting / lowering Translations between a role and its base are called lifting (base to role)
(§ 2.3.) and lowering (role to base) (§ 2.2.).

Translation polymorphism Conformance between a role and a base is governed by transla-
tion polymorphism, which refers to a substitutability that is achieved using either lifting
or lowering.

Declared lifting Generally, lifting happens implicitly at data flows between a role object and
its base. Team level methods provide additional data flows, where lifting may be declared
explicitly.

playedBy relation § 2.1.B

→ Syntax § A.1.1

(a) Role-base binding
Roles are bound to a base class by the playedBy keyword.

1 p u b l i c team c l a s s MyTeamA {
2 p u b l i c c l a s s MyRole playedBy MyBase {
3 . . .
4 }
5 }

(b) Inheritance
The playedBy relation is inherited along explicit and implicit (§ 1.3.1.(c)) role
inheritance.

(c) Covariant refinement
An explicit sub-role (sub-class using extends) can refine the playedBy relation to
a more specific base class (this is the basis for smart lifting (§ 2.3.3.)).
If a role class inherits several playedBy relations from its super-class and its super-
interfaces, there must be a most specific base-class among these relations, which is
conform to all other base-classes. This most specific base-class is the base-class of
the current role.

(d) No-variance
An implicit sub-role (according to § 1.3.1.(c)) may only add a playedBy relation
but never change an existing one.

TR 2007/03, TU-Berlin 17

§ 2.1. 2. ROLE BINDING OTJLD v1.0

Note however, that implicit inheritance may implicitly specialize an existing playedBy
relation (this advanced situation is illustrated in § 2.7.(d)).

(e) Use of playedBy bindings
The playedBy relation by itself has no effect on the behavior of role and base objects.
It is, however, the precondition for translation polymorphism (lowering: § 2.2. and
lifting: § 2.3.) and for method bindings (callout: § 3. and callin: § 4.).

(f) Effect on garbage collection
A role and its base object form one conceptual entity. The garbage collector will
see a role and its base object as linked in a bidirectional manner. As a result, a role
cannot be garbage collected if its base is still reachable and vice versa.
Internally a team manages its roles and corresponding bases using weak references.
When using one of the getAllRoles(..) methods (see § 6.1.(a)), the result may be
non-deterministic because these internal structures may hold weak references to ob-
jects that will be collected by the next run of the garbage collector. We advise clients
of getAllRoles(..) to call System.gc() prior to calling getAllRoles(..) in
order to ensure deterministic results.

Binding interfaces§ 2.1.1.

Role base bindings may involve classes and/or interfaces. An interface defined as a member of
a team is a role interface and may therefore have a playedBy clause. Also the type mentioned
after the playedBy keyword may be an interface.

Implementation limitation:
The language implementation as of OTDT version 1.0.X cannot yet bind a role class to a

base interface, but this restriction will go in the future.

Legal base classes§ 2.1.2.

Generally, the base class mentioned after playedBy must be visible in the enclosing scope
(see below (§ 2.1.2.(c)) for an exception). Normally, this scope is defined just by the imports
of the enclosing team. For role files (§ 1.2.5.(b)) also additional imports in the role file are
considered.
§ 2.1.2.(d) below defines how imports can be constrained so that certain types can be used
as base types, only.

(a) No role of the same team

The base class of any role class must not be a role of the same team.
It is also not allowed to declare a role class of the same name as a base class bound
to this or another role of the enclosing team, if that base class is given with its simple
name and resolved using a regular import. Put differently, a base class mentioned
after playedBy may not be shadowed by any role class of the enclosing team.
Base imports as defined below (§ 2.1.2.(d)) relax this rule by allowing to import a
class as a base class only. In that case no shadowing occurs since the scopes for
base classes and roles are disjoint.

(b) No cycles

The base class mentioned after playedBy may not be an enclosing type (at any
depth) of the role class being defined.

18 TR 2007/03, TU-Berlin

Otjld v1.0 2.1. playedBy relation § 2.1.2.

This rule prohibits the creation of cycles where the base instance of a given role R
contains roles of the same type R.
More generally any sequence of classes C1, C2, .. Cn were each Ci+1 is either a
member or the base class of Ci and Cn = C1 is forbidden.
Conversely, it is also prohibited to bind a role class to its own inner class.

(c) Base class decapsulation

If a base class referenced after playedBy exists but is not visible under normal
visibility rules of Java, this restriction may be overridden. This concept is called
decapsulation, i.e., the opposite of encapsulation (see also § 3.4.). A compiler
should signal any occurrence of base class decapsulation. If a compiler supports to
configure warnings this may be used to let the user choose to (a) ignore base class
decapsulation, (b) treat it as a warning or even (c) treat it as an error.
Decapsulation is not allowed if the base class is a confined role (see § 7.2.).
Within the current role a decapsulated base class can be mentioned in the right-
hand-side of any method binding (callout (§ 3.) or callin (§ 4.)). Also arguments in
these positions are allowed to mention the decapsulated base class:

• the first argument of one of the role’s constructors (see lifting constructor
(§ 2.4.1.)).

• the base side of an argument with declared lifting (see declared lifting (§ 2.3.2.)).

(d) Base imports

If the main type in a file denotes a team, the modifier base can be applied to an
import in order to specify that this type should be imported for application as a base
type only. Example:

1 import base some . pack . MyBase ;
2 p u b l i c team c l a s s MyTeam {
3 // simple name resolves to imported class:
4 p r o t e c t e d c l a s s MyRole playedBy MyBase { }
5 MyBase illegalDeclaration; // base import does not apply for this position
6 }

Types imported by a base import can only be used in the same positions where also
base class decapsulation (§ 2.1.2.(c)) is applicable.
It is recommended that a type mentioned after the keyword playedBy is always
imported with the base modifier, otherwise the compiler will give a warning.
Base imports create a scope that is disjoint from the normal scope. Thus, names
that are imported as base will never clash with normally visible names (in contrast
to § 1.4.). More specifically, it is not a problem to use a base class’s name also for
its role if a base import is used.

(e) No parameterized base class

It is not possible to specify a parameterized type as a role’s base class. If a class to
be bound as base class is generic the raw type must be used instead.

Note:
The information from the playedBy declaration is used at run-time to associate

role instances to base instances. Specifying a parameterized base class would imply
that only such base instances are decorated by a role whose type is conform to the

TR 2007/03, TU-Berlin 19

§ 2.2. 2. ROLE BINDING OTJLD v1.0

specified parameterized class. However, the type parameters are not available at
run-time, thus the run-time environment is not able to decide which base instances
should have a role and which should not. This is due to the design of generics in
Java which are realized by erasure.

Lowering§ 2.2.
Each instance of a bound role class internally stores a reference to its base object. The
reference is guaranteed to exist for each bound role instance, and cannot be changed during
its lifetime.

(a) Definition of lowering
Retrieving the base object from a role object is called lowering. No other means
exists for accessing the base reference.

(b) Places of lowering
The lowering translation is not meant to be invoked by client code, but implicit
translations are inserted by the compiler at all places where a role type is provided
while the corresponding base type (or a super type) was expected.
In other words: lowering translations are inserted by the compiler at all places in a
program which would otherwise not be type correct and which using lowering are
statically type correct. This may concern:

• the right hand side of an assignment wrt. the static type of the left hand side,
• the argument values of a method or constructor call wrt. the static type of the

corresponding formal parameter,
• the return value of a method compared to the declared return type of the

method.
• a role parameter in a callout binding (§ 3.3.(d))
• or the return value in a callin binding (§ 4.5.(d))

1 p u b l i c team c l a s s MyTeamA {
2 p u b l i c c l a s s MyRole playedBy MyBase { . . . }
3 v o i d useMyBase (MyBase myb) { . . . }
4 MyRole re turnMyRole () { . . . }
5 p u b l i c v o i d doSomething () {
6 MyRole r = new MyRole (new MyBase ()) ;
7 MyBase b = r ;
8 useMyBase (r) ;
9 MyBase b2 = returnMyRole () ;

10 }
11 }

Effects: An instance of type MyRole is lowered to type MyBase when
• assigning it to b (line 7)
• passing it as argument to a method with formal parameter of type MyBase (line

8)
• assigning the return value to a variable of type MyBase (line 9)

Note: The constructor call in line 6 uses the lifting constructor as defined in § 2.4.1.

20 TR 2007/03, TU-Berlin

Otjld v1.0 2.3. Lifting § 2.2.

Lowering translations are not inserted for
• reference comparison (using == or !=)
• instanceof checks
• cast expressions
• return values in callout bindings § 3.3.(d))
• parameters in callin bindings (§ 4.5.(d))

For cases where lowering shall be forced see § 2.2.(d) below.

(c) Typing
The static type of an implicit lowering translation is the base class declared using
playedBy in the respective role class.

(d) Explicit lowering
If a base type is also the super type of its role, which frequently happens, if a base
reference is known only by the type Object, lowering cannot be deduced automati-
cally, since a type could be interpreted both as a role type and a base type. These
cases may need explicit lowering. For this purpose the role class must declare to
implement the interface ILowerable (from org.objectteams.Team). This will
cause the compiler to generate a method

p u b l i c Object l o we r ()

for the given role class. Client code may use this method to explicitly request the
base object of a given role object.

1 p u b l i c team c l a s s MyTeamA {
2 p u b l i c c l a s s MyRole implements ILowerable p layedBy MyBase { . . . }
3 p u b l i c v o i d doSomething () {
4 MyRole r = new MyRole (new MyBase ()) ;
5 Object oMyRole = r ;
6 Object oMyBase = r . lower() ;
7 }
8 }

(e) Lowering of arrays
Lowering also works for arrays of role objects. In order to lower an array of role
objects, a new array is created and filled with base objects, one for each role object
in the original array. The array may have any number of dimensions at any shape.
The lowered array will have exactly the same shape.
Note, that each lowering translation will create a new array.

Lifting § 2.3.B

Lifting is the reverse translation of lowering. However, lifting is a bit more demanding, since
a given base object may have zero to many role objects bound to it. Therefor, the lift-
ing translation requires more context information and may require to create role objects on
demand.

(a) Definition of lifting
Retrieving a role for a given base object is called lifting. Lifting is guaranteed to
yield the same role object for subsequent calls regarding the same base object, the

TR 2007/03, TU-Berlin 21

§ 2.3. 2. ROLE BINDING OTJLD v1.0

same team instance and the same role class (see § 2.3.4. for cases of ambiguity that
are signaled by compiler warnings and possibly runtime exceptions).

(b) Places of lifting
The lifting translation is not meant to be invoked by client code, but translations
are inserted by the compiler at the following locations:
• Callout bindings (§ 3.3.(c)) (result)
• Callin bindings (§ 4.5.(a)) (call target and parameters)
• Declared lifting (§ 2.3.2.)

(c) Typing
A lifting translation statically expects a specific role class. This expected role class
must have a playedBy clause (either directly, or inherited (explicitly or implicitly)
from a super role), to which the given base type is conform.

(d) Lifting of arrays
Lifting also works for arrays of role objects. For lifting an array of base objects a new
array is created and filled with role objects, one for each base object in the original
array. In contrast to the role objects themselves, lifted arrays are never reused for
subsequent lifting invocations.

The term translation polymorphism describes the fact that at certain points values can be
passed which are not conform to the respective declared type considering only regular inher-
itance (extends). With translation polymorphism it suffices that a value can be translated
using lifting or lowering.

Implicit role creation§ 2.3.1.

Lifting tries to reuse existing role objects so that role state persists across lifting and lowering.
If no suitable role instance is found during lifting, a new role is created.

(a) Reuse of existing role objects

A role object is considered suitable for reuse during lifting, if these three items are
identical:
1. the given base object
2. the given team object
3. the statically required role type

For the relation between the statically required role type and the actual type of the
role object see "smart lifting" (§ 2.3.3.).

(b) Default lifting constructor

Lifting uses a default constructor which takes exactly one argument of the type of
the declared base class (after playedBy). By default the compiler generates such a
constructor for each bound role. On the other hand, default constructors that take
no arguments (as in JLS §8.8.716) are never generated for bound roles.
The super-constructor to be invoked by a default lifting constructor depends on
whether the role’s super class is a bound role or not.

16http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#16823

22 TR 2007/03, TU-Berlin

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#16823
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#16823

Otjld v1.0 2.3. Lifting § 2.3.1.

• If the super-class is a bound role, the default lifting constructor will invoke the
default lifting constructor of the super-class.

• If the super-class is not a bound role, the default lifting constructor will invoke
the normal argumentless default constructor of the super-class.

(c) Custom lifting constructor

If a role class declares a custom constructor with the same signature as the default
lifting constructor, this constructor is used during lifting. This custom constructor
may pre-assume that the role has been setup properly regarding its base-link and
registered in the team’s internal map of roles.
If a bound role has an unbound super-class without an argumentless constructor,
providing a custom lifting constructor is obligatory, because no legal default lifting
constructor can be generated.

Declared lifting § 2.3.2.B

→ Syntax § A.6.2

(a) Parameters with declared lifting

A non-static team-level method or constructor may declare a parameter with two
types in order to explicitly denote a place of lifting. Using the syntax

p u b l i c v o i d m (BaseC la s s as R o l e C l a s s param) { stmts }

a liftable parameter can be declared, provided the second type (RoleClass) is a role
of (playedBy) the first type (BaseClass). Furthermore, the role type must be a
role of the enclosing team class defining the given method. The role type must be
given by its simple (i.e., unqualified) name.
Such a signature requires the caller to provide a base object (here BaseClass), but
the callee receives a role object (here RoleClass). In fact, the client sees a signature
in which the "as RoleClass" part is omitted.
Compatibility between caller and callee sides is achieved by an implicitly inserted
lifting translation. A signature using declared lifting is only valid, if the requested
lifting is possible (see § 2.3.3. and § 2.3.4. for details).

(b) Super in the context of declared lifting

Calling super or tsuper in a method or constructor which declares lifting for one or
more parameters refers to a method or constructor with role type parameters, i.e.,
lifting takes place before super invocation. Nevertheless, the super method may also
have a declared lifting signature. It will then see the same role instance(s) as the
current method.

(c) Declared lifting of arrays

If a parameter involving explicit lifting should be of an array type, the syntax is

p u b l i c v o i d m (BaseC la s s as R o l e C l a s s param []) . . .

Here the brackets denoting the array apply to both types, BaseClass and RoleClass.

TR 2007/03, TU-Berlin 23

§ 2.3.3. 2. ROLE BINDING OTJLD v1.0

(d) Declared lifting for catch blocks

Also the argument of a catch block may apply declared lifting like in:

ca tch (BaseExcept ion as R o l e C l a s s param) { stmts }

This syntax is only valid in a non-static scope of a team (directly or nested). In
the given example, RoleClass must be played by BaseException. Note, that
RoleClass itself need not be a throwable. As the effect of this declaration the catch
block will catch any exception of type BaseException and provides it wrapped with
a RoleClass instance to the subsequent block.
Also note, that re-throwing the given instance param has the semantics of implicitly
lowering the role to its base exception before throwing, because the role conforms
to the required type Throwable only via lowering.

Listing 7: Example code (Declared Lifting):
1 team c l a s s Super {
2 p u b l i c c l a s s MyRole p layedBy MyBase { . . . }
3 v o i d m (MyRole o) { . . . } ;
4 }
5 team c l a s s Sub e x t e n d s Super {
6 v o i d m (MyBase as MyRole o) {
7 // inside this method o is of type MyRole
8 s u p e r .m(o) ;
9 }

10 }
11 Sub s_team = new Sub () ;
12 MyBase b = new MyBase () ;
13 s_team .m(b) ; // clients see a parameter "MyBase o"

Effects:

• Clients use method m with a base instance (type MyBase) as its argument (line 13).

• Before executing the body of m, the argument is lifted such that the method body receives
the argument as of type MyRole (line 8).

Smart lifting§ 2.3.3.

In situations where role and base classes are part of some inheritance hierarchies (extends),
choosing the appropriate role class during lifting involves the following rules:

(a) Static adjustment

If a base class B shall be lifted to a role class R that is not bound to (playedBy) B,
but if a subclass of R — say R2 — is bound to B, lifting is statically setup to use
R2, the most general subclass of R that is bound to B or one of its super-types.

Restriction:
This step is not applicable for parameter mappings of replace callin bindings

(§ 4.5.(d)).

24 TR 2007/03, TU-Berlin

Otjld v1.0 2.3. Lifting § 2.3.3.

(b) Dynamic selection of a role class

At runtime also the dynamic type of a base object is considered: Lifting always
tries to use a role class that is bound to the exact class of the base object. Lifting
considers all role–base pairs bound by playedBy such that the role class is a sub-
class of the required (statically declared) role type and the base class is a super-class
of the dynamic type of the base object.
From those possible pairs the most specific base class is chosen. If multiple role
classes are bound to this base class the most specific of these classes is chosen.

(c) Team as closed world

In the above analysis gathering all role-base pairs is performed at compile-time.
From this follows, that a team class can only be compiled when all its contained role
classes are known and a role class can never be compiled without its team.
The analysis includes all roles and their bindings that are inherited from the super-
team.

(d) Selection regardless of abstractness

Smart lifting is not affected by abstractness of role classes. For the effect of abstract
role classes see § 2.5..

role class base class
class R1
class R2 extends R1 playedBy B2 class B2
class R3 extends R2
/* inherited: playedBy B2 */

class B3 extends B2

class R4 extends R3 playedBy B4 class B4 extends B3
class R5 extends R4
/* inherited: playedBy B4 */

class B6 extends B4
class R7 extends R5 playedBy B7 class B7 extends B6

• If declarations require lifting B3 to R1 this is statically refined to use R2 instead, because
this is the most general class declaring a binding to a super–class of B3.

• If the dynamic base type in the same situation is B6, three steps select the appropriate
role:

TR 2007/03, TU-Berlin 25

§ 2.3.4. 2. ROLE BINDING OTJLD v1.0

1. By searching all playedBy clauses (including those that are inherited) the following
role–base pairs are candidates:
(R2,B2), (R3,B2), (R4,B4) and (R5,B4).

2. From these pairs the two containing the most specific base class B4 are chosen.
3. This makes R4 and R5 role candidates, from which the most specific R5 is finally

chosen.

If the inheritance hierarchies of the involved base and role classes are given (like in the figure
above) the smart lifting algorithm can be rephrased to the following "graphical" rule:

Starting with the dynamic base type (B6 in the example) move upwards the the inheritance
relation until you reach a base class bound to a role class indicated by a «playedBy» arrow
pointing to the base class (B4). This role class must be conform to the requested role type.
Switch to the role side along this arrow (R4). Now move downwards the role inheritance
hierarchy as long as the subrole does not refine the playedBy relationship (indicated by another
«playedBy» arrow). The bottom role you reach this way (R5) is the role type selected by smart
lifting.

Binding ambiguities§ 2.3.4.

While all examples so far have only shown 1-to-1 class bindings, several cases of multiple
bindings are allowable. Ambiguities may be detected at compile time and/or at runtime.

(a) Potential ambiguity

A potential ambiguity is given, if two role classes R1 and R2 exist such that
• R1 and R2 are played by the same base class B, and
• R1 and R2 have a common super role R0, which is also bound to a base class

B0, and
• neither role class R1 nor R2 is a (indirect) sub-class of the other.

Note:
According to § 2.1.(c), if B is distinct from B0 it has to be a sub-class of B0.

Effect:
In this case the compiler issues a warning, stating that the B may not be liftable,

because both role classes R1 and R2 are candidates and there is no reason to prefer
one over the other.
If no potential ambiguity is detected, lifting will always be unambiguous.
In the above situation, trying to lift an instance of type B to the role type R0 is
an illegal lifting request. If R0 is bound to the same base class B as its sub-roles
R1 and R2 are, role R0 is unliftable, meaning that no instance of R0 can ever by
obtained by lifting.

Listing 8: Example code (Potential Ambiguity):
1 team c l a s s MyTeam {
2 p u b l i c c l a s s SuperRo le p layedBy MyBase { . . . }
3 p u b l i c c l a s s SubRoleA e x t e n d s SuperRo le { . . . }
4 p u b l i c c l a s s SubRoleB e x t e n d s SuperRo le { . . . }
5 }

26 TR 2007/03, TU-Berlin

Otjld v1.0 2.3. Lifting § 2.3.4.

(b) Definite ambiguity

A definite ambiguity is given if

• the situation of potential ambiguity according to (a) above is given and

• lifting is requested (either by method binding or explicitly (§ 2.3.2.)) from the
shared base class B to any role class R0 that is a common super role for R1 and
R2.

Effect:
Definite ambiguity is a compile time error.

Listing 9: Example code (Definite Ambiguity):
1 team c l a s s MyTeam {
2 p u b l i c c l a s s SuperRo le p layedBy MyBase { . . . }
3 p u b l i c c l a s s SubRoleA e x t e n d s SuperRo le p layedBy SubBase { . . . }
4 p u b l i c c l a s s SubRoleB e x t e n d s SuperRo le p layedBy SubBase { . . . }

6 p u b l i c v o i d useSupe rRo l e (SubBase as SuperRo le r) { . . . }
7 }

(c) Actual ambiguity

At runtime actual ambiguity may occur if for the dynamic type of a base to be
lifted the conditions of (b) above hold accordingly. Actual ambiguity is only possible
in cases reported by the compiler as potential ambiguity.

Effect:
An actual ambiguity is reported at runtime by throwing a

org.objectteams.LiftingFailedException.

Listing 10: Example code (Actual Ambiguity):
1 team c l a s s MyTeam {
2 p u b l i c c l a s s SuperRo le p layedBy MyBase { . . . }
3 p u b l i c c l a s s SubRoleA e x t e n d s SuperRo le p layedBy SubBase { . . . }
4 p u b l i c c l a s s SubRoleB e x t e n d s SuperRo le p layedBy SubBase { . . . }

6 p u b l i c v o i d useSupe rRo l e (MyBase as SuperRo le r) { . . . }
7 }
8 // plus these calls:
9 MyTeam mt = new MyTeam () ;

10 mt . useSupe rRo l e (new SubBase ()) ;

(d) Mismatching role

In cases of potential ambiguity another runtime error may occur: a mismatching
role is encountered when a role is found in the cache, which is not conform to the
required type. This happens, if the base object has previously been lifted to a type
that is incompatible with the currently requested type.

Effect:
This is reported by throwing a org.objectteams.WrongRoleException.

TR 2007/03, TU-Berlin 27

§ 2.4. 2. ROLE BINDING OTJLD v1.0

Listing 11: Example code (Mismatching Role):
1 team c l a s s MyTeam {
2 p u b l i c c l a s s SuperRo le p layedBy MyBase { . . . }
3 p u b l i c c l a s s SubRoleA e x t e n d s SuperRo le { . . . }
4 p u b l i c c l a s s SubRoleB e x t e n d s SuperRo le { . . . }

6 p u b l i c v o i d useRoleA (MyBase as SubRoleA r) { . . . }
7 p u b l i c v o i d useRoleB (MyBase as SubRoleB r) { . . . }
8 }
9 // plus these calls:

10 MyTeam mt = new MyTeam () ;
11 MyBase b = new MyBase () ;
12 mt . useRoleA (b) ; // creates a SubRoleA for b
13 mt . useRoleB (b) ; // finds the SubRoleA which is not compatible
14 // to the expected type SubRoleB.

From the second item of § 2.3.4.(a) follows, that for binding ambiguities different
role hierarchies are analyzed in isolation. For this analysis only those role classes are
considered that are bound to a base class (directly using playedBy or by inheriting
this relation from another role class). I.e., two role classes that have no common
bound super role will never cause any ambiguity.

Explicit role creation§ 2.4.
Lifting is the normal technique by which role objects are created implicitly. This section defines
under which conditions a role can also be created explicitly.

Role creation via a lifting constructor§ 2.4.1.

Lifting uses the default constructor for roles (see § 2.3.1.). This constructor can be invoked
from client code, if the following rules are respected.

(a) Team context

The lifting constructor can be used only within the enclosing team of the role to be in-
stantiated. Thus, qualified allocation expressions (someTeam.new SomeRole(..))
may never use the lifting constructor.

(b) Fresh base object

If the argument to a lifting constructor invocation is a new expression, creating a
fresh base object, the use of the lifting constructor is safe. Otherwise the rules of
(c) below apply.

(c) Duplicate role runtime check

If it cannot be syntactically derived, that the argument to a lifting constructor is a
freshly created base object (b), a compile time warning will signal that an additional
runtime check is needed: It must be prevented that a new role is created for a base
object, which already has a role of the required type in the given team. It is not
possible to replace an existing role by use of the lifting constructor. At runtime, any
attempt to do so will cause a org.objectteams.DuplicateRoleException to be
thrown. This exception can only occur in situations where the mentioned compile
time warning had been issued.

28 TR 2007/03, TU-Berlin

Otjld v1.0 2.4. Explicit role creation § 2.4.2.

§ 6.1. will introduce reflective functions which can be used to manually prevent
errors like a duplicate role.

Role creation via a regular constructor § 2.4.2.B

Roles may also be created explicitly using a custom constructor with arbitrary signature other
than the signature of the lifting constructor.
Within role constructors, four kinds of self-calls are possible:

base(..) A constructor of the corresponding base class (→ Syntax § A.5.3(c)).

this(..) Another constructor of the same class.

super(..) A constructor of the super-class (normal extends), unless the super-class is bound
to a different base class, in which case calling super(..) is not legal.

tsuper(..) A constructor of the corresponding role of the super-team (→ Syntax § A.5.4(e)).
Also see the constraint in § 1.3.2.(c).

(a) Unbound roles

Each constructor of a role that is not bound to a base class must use one of
this(..), super(..) or tsuper(..).

(b) Bound roles

Each constructor of a bound role must directly or indirectly invoke either a base(..)
constructor or a lifting constructor (see § 2.3.1.). Indirect calls to the base construc-
tor or lifting constructor may use any of this(..), super(..) or tsuper(..),
which simply delegates the obligation to the called constructor.
If a constructor referenced by base(..) is not visible according to the regular rules
of Java, it may still be called using decapsulation (see also § 3.4., § 2.1.2.(c)).
Note, that if the super or tsuper role is not bound, delegating the obligation to that
unbound role will not work.

(c) Super-call for bound roles

Instead of or prior to calling base(..) a constructor of a bound role explicitly or
implicitly calls a super constructor. Which constructor is applicable depends on the
super role and its playedBy clause.
• If the super role is bound to the same base class as the current role is,

– not writing a super-call causes the lifting constructor of the super role to be
invoked.

– explicitly calling a super constructor requires the super constructor to either
1. create a role instance using a base constructor call (directly or indirectly),

or
2. be a lifting constructor receiving a base instance, which the current role

must provide as the argument.
• If the super role is bound but the current role refines the playedBy relationship

(cf. § 2.1.(c)),
– a lifting constructor must be called explicitly passing a base object as the

argument.

TR 2007/03, TU-Berlin 29

§ 2.4.3. 2. ROLE BINDING OTJLD v1.0

• If the role has an explicit or implicit super role which is unbound the constructor
may optionally call a super constructor (using super(..) or tsuper(..)) prior
to calling base(..). Otherwise the default constructor is implicitly invoked.

When invoking a lifting constructor of a super role the base object can optionally be
obtained by using a base constructor call as an expression:

s u p e r (base (<args>)) ;

The language system evaluates the base constructor by creating an instance of the appropriate
base class using a constructor with matching signature. Also the internal links are setup that
are needed for accessing the base object from the role and for lifting the base object to the
new role in the future.
The syntax for base constructors follows the rule that role implementations never directly refer
to any names of base classes or their features.

Role creation in the presence of smart lifting§ 2.4.3.

Explicitly instantiating a role R1 bound to a base B where smart lifting of B to R1 would
actually provide a subrole R2 is dangerous: Instantiation enters the R1 into the team’s internal
cache. If at any time later lifting this B to R2 is requested, which is a legal request, the
runtime system will answer by throwing a org.objectteams.WrongRoleException because
it finds the R1 instead of the required R2. For this reason, in this specific situation the explicit
instantiation new R1(..) will be flagged by a warning. The problem can be avoided by using
R2 in the instantiation expression.

Listing 12: Example code (WrongRoleException):
1 p u b l i c c l a s s B { v o i d bm() {} }
2 p u b l i c team c l a s s T {
3 p r o t e c t e d c l a s s R1 p layedBy B { . . . }
4 p r o t e c t e d c l a s s R2 e x t e n d s R1 { // inherits the binding to B
5 v o i d rm () { /∗ body omi t ted ∗/ }
6 }
7 p u b l i c B getDecoratedB () {
8 r e t u r n new R1(new B ()) ; // compile-time warning!
9 }

10 p u b l i c v o i d r e q u e s t L i f t i n g (B as R2 r) {}
11 }
12 // plus these calls:
13 T t = new T () ;
14 B b = t . getDecoratedB () ; // creates an R1 for b
15 t . r e q u e s t L i f t i n g (b) ; // => org.objectteams.WrongRoleException!

• A note on line 8: this line passes a fresh instance of B to the lifting constructor of R1
(see § 2.4.1.(b)). In order to return this B instance lowering is implicitly used for the
return statement.

• When line 15 is executed, a lifting of b to R2 is requested but due to line 8 an R1 is
found in the internal cache.

30 TR 2007/03, TU-Berlin

Otjld v1.0 2.5. Abstract Roles § 2.5.

Abstract Roles § 2.5.B

Overriding of role classes and dynamic binding of role types (§ 1.3.1.(e)) adds new cases to
creation with respect to abstract classes.

(a) Using abstract classes for creation
Abstract role classes can indeed be used for object creation. The effect of such a
statement is that the team must be marked abstract. Only those sub-teams are
concrete that provide concrete versions for all role classes used in creation expres-
sions.
This includes the case, where a super-team has a concrete role class and creates in-
stances of this role class and only the sub-team changes the status of this role class
to abstract. Also here the sub-team must be marked abstract, because it contains
an abstract role class that is used in creation expressions.
Interpretation:

Since the type in a role creation expression is late-bound relative to the enclosing
team instance, abstract role classes can be seen as the hook in a template&hook
pattern that is raised from the method level to the class level: A super-team may
already refer to the constructor of an abstract role class, only the sub-team will
provide the concrete role class to fill the hook with the necessary implementation.

(b) Relevant roles
A team must be marked abstract if one of its relevant roles is abstract.
A role is relevant in this sense if
• the role class is public or if
• an explicit new expression would require to create instances of the role class, or

if
• any of the lifting methods of the enclosing team would require to create instances

of the role class.
A role is irrelevant with respect to lifting if either of the following holds:
– It is not bound to a base class, neither directly nor by an inherited playedBy

clause.
– It has a sub-role without a playedBy clause.
– It is bound to an abstract base class, and for all concrete sub-classes of the

base class, a binding to a more specific role class exists.
If neither property, relevance nor irrelevance, can be shown for an abstract role, a
warning is given in case the enclosing team is not abstract.

Explicit base references § 2.6.B

The role-base link is not meant to be accessed explicitly from programs, but it is fully under
the control of compiler and runtime environment. Accessing features of a role’s base object
is done by callout bindings (§ 3.). Yet, a keyword base exists, which can be used in the
following contexts:

(a) Externalized roles of a base team
If the base class of a role T1.R1 is again a team T2, roles of that team T2 can be
externalized (see § 1.2.2.) using base as their type anchor. Given that R2 is a role
of T2, one could write:

TR 2007/03, TU-Berlin 31

§ 2.6. 2. ROLE BINDING OTJLD v1.0

1 p u b l i c team c l a s s T1 {
2 p r o t e c t e d c l a s s R1 playedBy T2 {
3 p r o t e c t e d R2<@base> aRoleOfMyBase ;
4 }
5 }

This syntax is only legal within the body of the role T1.R1 which is bound to the
team T2 containing role R2. A static type prefix can be used to disambiguate a base
anchor, so the explicit variant of the above type would be R2<@R1.base>.
It is not legal to use a type anchor containing base as an element in a path of
references like <@base.field> or <@field.base>.

(b) Explicit base object creation
Within a role constructor (which is not the lifting constructor) the syntax base(arguments)
causes an instance of the bound base class to be created and linked (see § 2.4.2.).

(c) Base call in callin method
Within a callin method (§ 4.2.(d)) an expression base.m(args) is used to invoke
the originally called method (see § 4.3.).

(d) Base guard predicates
Guard predicates (§ 5.4.) can be specified to act on the base side using the base
when keywords. Within such a base guard predicate base is interpreted as a special
identifier holding a reference to the base object that is about to be lifted for the
sake of a callin method interception (see § 5.4.2.(a)).

(e) Parameter mappings
An expression at the right-hand side of a parameter mapping (parameter in a callin
binding (§ 4.4.) or result in a callout binding (§ 3.2.(c))) may use the keyword base
to refer to the bound base instance. Such usage requires the role method bound in
this method binding to be non-static.

(f) Inhibition of modification
In all cases, the base reference is immutable, i.e., base can never appear as the
left-hand-side of an assignment.

Advanced structures§ 2.7.
This section discusses how role containment and the playedBy relationship can be combined.
It does not define new rules, but illustrates rules defined above. The central idea is that any
class can have more than one of the three flavors team, role, and base.

(a) Nesting
If a role (contained in a team) is also a team (marked with the team modifier) it is
a nested team. The depth of nesting is not restricted.

(b) Stacking
If the base class to which a role is bound using playedBy is a team, the role is said
to be stacked on the base team.

32 TR 2007/03, TU-Berlin

Otjld v1.0 2.7. Advanced structures § 2.7.

(c) Layering
If roles of a team Secondary are played by roles of another team Primary (i.e.,
base classes are roles), the team Secondary defines a layer over the team Primary.
Such layering requires a final reference anchor from Secondary to an instance of
Primary. All playedBy declarations within Secondary specify their base classes
anchored to that final link anchor.

Due to the anchored base types, layered teams implicitly support the following guar-
antee: all base objects of roles of Secondary are contained within the team instance
specified by the link anchor. If roles of Secondary contain any callin bindings to
non-static base methods, these will be triggered only when a base method is invoked
on a base instance contained in the team specified by anchor.
In accordance with § 2.6.(a) the anchor in such anchored playedBy declarations
could also be the pseudo identifier base, provided that Secondary is a nested team,
which has a playedBy binding to Primary as its base class. This situation is part of
the second example below (§ 2.7.(d)) (see T1 playedBy TB1).

TR 2007/03, TU-Berlin 33

§ 2.7. 2. ROLE BINDING OTJLD v1.0

(d) Implicit playedBy specialization
According to § 2.1.(d) an implicit sub-role may implicitly specialize an existing
playedBy relation. This requires the base class to be specified relative to some im-
plicit (OuterTeam.this) or explicit (OuterTeam.base) team anchor. Specializing
that team anchor automatically specializes the playedBy declaration, too. This rule
never requires any action from a programmer but only explains the interpretation of
a playedBy declaration in complex situations.

• If a role TOuter1.T.R of a nested
team TOuter1.T is played by an-
other role of the outer enclos-
ing team TOuter1.B, subclass-
ing the outer team TOuter1 to
TOuter2 will produce a new role
TOuter2.T.R which is automati-
cally played by TOuter2.B, an im-
plicit sub class of the original base
class TOuter1.B.

• Consider the case where a nested
T1 as a role of TOuter is stacked
on a base team TB1. Also, T1 is
a layered team over TB1 because
its role R adapts role TB1.B.
In this situation the playedBy
relation of role TOuter.T1.R is
given by a base-anchored type
B<@T1.base>. If furthermore
TOuter.T1 is subclassed to
TOuter.T2 which covariantly
refines the inherited playedBy dec-
laration to TB2, then TOuter.T2.R
will automatically refine the inher-
ited playedBy relation to TB2.B to
follow the new interpretation of
the base anchor.

34 TR 2007/03, TU-Berlin

Otjld v1.0 § 3.

Callout Binding § 3.B

Notion of callout binding
callout binding A callout binding declares that a method call to a role object may be for-

warded to a base method of the associated base object (the role object "calls out" to
the base).

declarative completeness Even if a role class does not implement all needed methods, but
forwards some to its base, also these methods must be declared within the role. Secondly,
no forwarding occurs, unless explicitly declared by a callout binding.

expected/provided A callout binding binds an expected method of the role class (needed
but not implemented here) to a provided method of the base class.

Callout method binding § 3.1.B

→ Syntax § A.3.2
A role class may acquire the implementation for any of its (expected) methods by declaring a
callout binding.

(a) Prerequisite: Class binding
A callout binding requires the enclosing class to be a role class bound to a base class
according to § 2.1..

(b) Definition
A callout binding maps an abstract role method ("expected method") to a concrete
base method ("provided method"). It may appear within the role class at any place
where feature declarations are allowed. It is denoted by

expected_method_designator −> provided_method_designator;

The effect is that any call to the role method will be forwarded to the associated
base object using the provided base method.

Listing 13: Example code (Callout):
1 team c l a s s Company {
2 p u b l i c c l a s s Employee p layedBy Person {
3 a b s t r a c t S t r i n g g e t I d e n t i f i c a t i o n () ;
4 // callout binding see below...
5 }
6 }

(c) Kinds of method designators
A method designator may either be a method name

4 g e t I d e n t i f i c a t i o n -> getName ;

or a complete method signature including parameter declarations and return type
declaration, but excluding any modifiers and declared exceptions.

4 S t r i n g g e t I d e n t i f i c a t i o n () -> S t r i n g getName () ;

TR 2007/03, TU-Berlin 35

§ 3.1. 3. CALLOUT BINDING OTJLD v1.0

Effects:
• Line 4 declares a callout binding for the role method getIdentification(),

providing an implementation for the abstract method defined in line 3.
• In combination with the role binding in line 2 this has the following effect:
• Any call to Employee.getIdentification is forwarded to the method

Person.getName.

Both sides of a callout binding must use the same kind of designators, i.e., designa-
tors with and without signature may not be mixed.
Each method designator must uniquely select one method. If a method designator
contains a signature this signature must match exactly with the signature of an exist-
ing method, i.e., no implicit conversions are applied for this matching. If overloading
is involved, signatures must be used to disambiguate.

(d) Inheritance of role method declarations
The role method being bound by a callout may be declared in the same class as the
binding or it may be inherited from a super class or super interface.

(e) Callout override
If an inherited role method is concrete, callout binding regarding this method must
use the token "=>" instead of "->" in order to declare that this binding overrides an
existing implementation.
Using the "=>" operator for an abstract method is an error.
It is also an error (and not useful anyway) to callout-bind a method that is imple-
mented in the same class as the binding.

(f) Inheritance of callout bindings
Callout bindings are inherited along explicit and implicit inheritance. Inherited callout
bindings can be overridden using "=>".

(g) Duplicate bindings
It is an error if a role class has multiple callout bindings for the same role method.

(h) Declared exceptions
It is an error if a base method to be bound by callout declares in its throws clause
any exceptions that are not declared by the corresponding role method.

(i) Shorthand definition
A callout binding whose method designators specify full method signatures does not
require an existing role method. If no role method is found matching the expected
method of such a callout binding, a new method is implicitly generated. The new
method has default visibility and none of the possible modifiers for methods are set.
The new method declares the same exceptions as the bound base method.

A callout binding either attaches an implementation to a previously declared method or adds
(§ 3.1.(i) above) a forwarding method to a role class. Apart from this implementation, callout-
bound methods do not differ from regular methods.
When we say, a callout binding defines forwarding this means that control is passed to the
base object. In contrast, by a delegation semantics control would remain at the role object,
such that self-calls would again be dispatched starting at the role. Callout bindings on their

36 TR 2007/03, TU-Berlin

Otjld v1.0 3.2. Callout parameter mapping § 3.2.

own do not support delegation. However, in conjunction with method overriding by means of
callin bindings (see § 4.) the effect of delegation can easily be achieved.

Callout parameter mapping § 3.2.B

→ Syntax § A.4.1

(a) with clause
If the method designators in a callout binding are signatures (not just method
names), parameters and return value may be mapped by a with{...} sub-clause.

(b) Mapping one parameter
For each parameter of the provided base method, exactly one parameter mapping
defines, which value will actually be passed to the base method. Callout parameter
mappings have this form:

expression −> base_method_parameter_name

(c) Result mapping
The return value of a callout method may be provided by a result mapping:

result <− expression

The right hand side expression of a result mapping may use the special identifier
result to refer to the value returned by the base method.
In a method binding with parameter mappings, it is an error to use result as the
name of a regular method argument.

Listing 14: Example code (Callout Parameter Mapping):
1 I n t e g e r a b s o l u t e V a l u e (I n t e g e r i n t e g e r) −> i n t abs (i n t i) with {
2 i n t e g e r . i n t V a l u e () −> i ,
3 result <− new I n t e g e r (result)
4 }

(d) Visible names
Each identifier that appears within the expressions of a parameter mapping must be
either:
• a feature visible in the scope of the role instance.
• a parameter of the role method (for parameter mappings).
• the special name result (for result mappings).
• in a result mapping also the special name base can be used in order to refer to

the bound base instance (provided the method being bound is not static).
The names of base method arguments (i.e., names after mapping) are only legal in
the position given in § 3.2.(b).

(e) Implicit parameter mappings
If parameter mappings should be omitted the following conditions must hold:
1. each method parameter of the role method must conform to the corresponding

parameter of the base method, and

TR 2007/03, TU-Berlin 37

§ 3.2. 3. CALLOUT BINDING OTJLD v1.0

2. the result type of the base method must conform to the result type of the role
method.

Here conformance includes translation polymorphism (cf. § 3.3.(d)).
Parameter correspondence without parameter mapping is determined by declaration
order not by names.
Two adjustments can, however, be performed implicitly:
• If the role method has more parameters than the base method, unused trailing

parameters may be silently ignored.
• If the role method returns void, any result from the base method may be silently

ignored.

Listing 15: Example code (Callout with Parameter Mapping):
1 p u b l i c team c l a s s MyTeamA {
2 p u b l i c a b s t r a c t c l a s s Role1 {
3 a b s t r a c t v o i d payEuro (f l o a t euro) ;
4 a b s t r a c t f l o a t earnEuro () ;
5 v o i d i d l e (i n t s econds) { /∗ do no th i ng ∗/ } ;
6 }
7 Role1 boss , worker = // initialization omitted
8 p u b l i c v o i d t r a n s a c t i o n () {
9 boss . payEuro (worker . ea rnEuro ()) ;

10 boss . i d l e (1 2 3) ;
11 }
12 }
13 p u b l i c c l a s s S t a f f { // a base class
14 p u b l i c v o i d payDM (f l o a t dm) { . . . } ;
15 p u b l i c f l o a t earnDM () { . . . } ;
16 p u b l i c i n t doze () { . . . } ;
17 // other methods omitted
18 }
19 p u b l i c team c l a s s MySubTeam e x t e n d s MyTeamA {
20 p u b l i c c l a s s Role1 p layedBy S t a f f {
21 v o i d payEuro (f l o a t euro) −> v o i d payDM(f l o a t dm) with {
22 euro ∗ 1.95583 f −> dm
23 }
24 f l o a t earnEuro () −> f l o a t earnDM () with {
25 r e s u l t <− r e s u l t / 1 .95583 f
26 }
27 i d l e => doze ; // override existing implementation of idle()
28 }
29 v o i d d o i t () {
30 t r a n s a c t i o n () ;
31 }
32 }

Effects:

• Class MyTeamA is declaratively complete and can be type checked because it only uses
methods that are visible or declared within this context. MyTeamA.Role1 can, however,
not be instantiated, because it is abstract.

• Line 30 has the normal effect of invoking transaction.

• When executing transaction, the call of worker.earnEuro() is forwarded to the
corresponding base object using method earnDM() (binding declaration in line 24). The
result is converted by "result / 1.95583f" (line 25).

38 TR 2007/03, TU-Berlin

Otjld v1.0 3.3. Lifting and lowering § 3.3.

• Within the same execution of transaction, the call of boss.payEuro() is forwarded
to the corresponding base object using method payDM() (binding declaration in line 21).
The parameter euro is converted by "euro * 1.95583f" (line 22).

• Method idle is forwarded to doze without any parameter mapping. This requires doze
to have a signature that is conformable to the signature of idle. In this case a role
parameter and a base result are ignored.
Using the => operator, this binding overrides the existing implementation of idle.

Lifting and lowering § 3.3.B

(For basic definitions see § 2.2. and § 2.3.)

(a) Call target translation
Invoking a base method due to a callout binding first lowers the role object in order
to obtain the effective call target.

(b) Parameter translation
Passing a role object as parameter to a callout method implicitly lowers this param-
eter, if the base method declares a corresponding base type parameter.
Lifting of callout parameters is not possible.

(c) Result translation
When returning a base object from a callout method where the role method declares
the result to be of a role class, this object is implicitly lifted to the appropriate role.
Lowering the result of a callout binding is not possible.

(d) Typing rules
A parameter mapping (implicit by parameter position or explicit by a with clause)
is well typed if the left hand side conforms to the right hand side, either by
• type equality
• implicit primitive type conversion
• subtype polymorphism
• translation polymorphism, here: lowering,
• or by a combination of the above.

A result mapping (implicit or explicit by a with clause) is well typed, if the value
at the right hand side conforms to the left hand side according to the rules given
above, except that translation polymorphism here applies lifting instead of lowering.

(e) Role arrays
For arrays of roles as parameters § 2.2.(e) applies accordingly. For arrays as a return
value § 2.3.(d) applies.

TR 2007/03, TU-Berlin 39

§ 3.4. 3. CALLOUT BINDING OTJLD v1.0

Overriding access restrictions§ 3.4.
In contrast to normal access restrictions, method bindings may refer to hidden base methods.
This concept is the inverse of encapsulation, hence it is called decapsulation.
Decapsulation may occur in these positions:

• playedBy declaration (see § 2.1.2.(c))

• base constructor call (see § 2.4.2.(b)).

• callout bindings (see next)

• callout to field (see § 3.5.(e))

• base call within a callin method (see § 4.6.)

(a) Callout to inaccessible base method
By means of callout bindings it is possible to access methods of a base class re-
gardless of their access modifiers. Method bindings are the only place in a program
which may mention otherwise inaccessible methods. Access to the callout method
at the role side is controlled by regular mechanisms, based on the declaration of the
role method.

(b) Sealing against decapsulation
A base package may be "sealed" which re-establishes the standard Java visibility
rules.
Sealing is achieved by the corresponding capability of Jar files.

(c) Warning levels
A compiler should signal any occurrence of decapsulation. If a compiler supports
to configure warnings this may be used to let the user choose to (a) ignore base
class decapsulation, (b) treat it as a warning or even (c) treat it as an error (cf.
§ 2.1.2.(c)).
Optionally, a batch compiler may support three levels of verbosity with respect to
decapsulation:

-nodecapsulation No warnings.
default Warn only if/that access restric-

tions are overridden.
-decapsulation Detailed messages containing the

binding and the hidden base
method.

(d) Private methods from super classes
If a callout binding shall bind to a private base method, that method must be defined
in the exact base class to which the current role class is bound using playedBy. I.e.,
for private methods § 3.1.(d) does not hold.
The same holds for private base fields (see below).
If a private base feature must indeed be callout-bound, a role class must be defined
that is played by the exact base class defining the private feature. Another role
bound to a sub-base-class can then be defined as a sub class of the first role. It will
inherit the callout binding and through this it can access the desired feature.

40 TR 2007/03, TU-Berlin

Otjld v1.0 3.5. Callout to field § 3.5.

1 p u b l i c c l a s s SuperBase {
2 private int secret;
3 }
4 p u b l i c c l a s s SubBase e x t e n d s SuperBase { /∗ d e t a i l s omi t ted ∗/ }
5 p u b l i c team c l a s s MyTeam {
6 p r o t e c t e d c l a s s SuperRo le p layedBy SuperBase {
7 i n t s t e a l () −> get i n t secret ; // OK
8 }
9 p r o t e c t e d c l a s s SubRole e x t e n d s SuperRo le p layedBy SubBase {

10 i n t s t e a l () −> get i n t secret ; // illegal!
11 }
12 }

Callout to field § 3.5.B

Also fields of a base class can be made accessible using a callout binding.

(a) Syntax
Using one of the callout modifiers get or set a role method can be bound to a field
of the role’s base class:

1 ge tVa lue −> get v a l u e ;
2 s e t V a l u e −> set v a l u e ;
3 i n t ge tVa lue () −> get i n t v a l u e ;

where getValue, setValue are abstract role methods of appropriate signatures and
value is a field of the bound base class.
A longer syntax is available, too (see line 3 above), which uses complete signatures.
For the left hand side § 3.1.(c) applies, for the right hand side, this longer version
prepends the field type to the field name.

(b) Compatibility
A role method bound with the modifier get should have no arguments (it may have
arbitrary arguments, which are silently ignored) and should have a return type to
which the base field is compatible. A role method returning void will ignore the given
value and thus has no effect at all, which will be signaled by a compiler warning.
A role method bound with the modifier set must have a first argument that is
compatible to the base field’s type (additional arguments - if present - are silently
ignored) and must not declare a return type.

(c) Value mapping
Values can be mapped similar to parameter mappings in pure method bindings
(§ 3.2.). Such mappings can be used to establish compatibility as required above.
In both get and set bindings, the base side value is denoted by the field’s name
(lines 2 and 4 below).

1 I n t e g e r ge tVa lue () −> get i n t v a l
2 with { r e s u l t <− new I n t e g e r (v a l) }
3 v o i d s e t V a l u e (I n t e g e r i) −> set i n t v a l
4 with { i . i n t V a l u e () −> v a l }

(d) Effect
Callout-binding a role method to a base field generates an implementation for this
role method, by which it acts as a getter or setter for the given field of the associated
base object.

TR 2007/03, TU-Berlin 41

§ 3.5. 3. CALLOUT BINDING OTJLD v1.0

(e) Access control
For accessing an otherwise invisible field, the rules for decapsulation (§ 3.4.) apply
accordingly.
Recall, that according to JLS §8.317 fields may be hidden in sub-classes of a given
base class. Therefore, it is relevant to know that a callout to a field will always
access the field that is visible in the exact base class of the role class defining the
callout. This is especially relevant for accessing private fields.

(f) Shorthand definition
Just as in § 3.1.(i) a shorthand definition allows to introduce a callout field access
method without prior abstract declaration. This requires the callout field binding to
specify types as in line 3 of § 3.5.(a) above.

(g) Callout override
Similar to method callouts a callout to field may override an existing role method if
and only if the token => is used instead of -> (see § 3.1.(e) and § 3.1.(f)).

17http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40898

42 TR 2007/03, TU-Berlin

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40898
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40898

Otjld v1.0 § 4.

Callin Binding § 4.B

Notion of callin binding
Callin bindings realize a forwarding in the direction opposite to callout bindings (see § 3.).
Both terms are chosen from the perspective of a role, which controls its communication with
an associated base object. Technically, callin bindings are equivalent to weaving additional
code (triggers) into existing base methods.

Callin Methods of a base class may be intercepted by a callin binding (the base method
"calls into" the role).

Before/after/replace The modifiers before, after, replace control the composition of orig-
inal method and callin method.

Activation Callin bindings may be active or inactive according to § 5..

Callin method binding § 4.1.B

→ Syntax § A.3.3

(a) Method call interception
A role method may intercept calls to a base method by a callin binding.

(b) Prerequisite: Class binding
A callin binding requires the enclosing class to be a role class bound to a base
class according to § 2.1.. An unliftable role (see § 2.3.4.(a)) cannot define callin
bindings. In that case callin bindings can only be introduced in sub-roles which (by
an appropriately refined playedBy clause) disambiguate the lifting translation.

(c) Callin declaration
A callin binding composes an existing role method with a given base method. It may
appear within the role class at any place where feature declarations are allowed. It
is denoted by

role_method_designator <− callin_modifier base_method_designator;

Just like with callout bindings, method designators may or may not contain pa-
rameters lists and return type but no modifiers; also, each method designator must
exactly and uniquely select one method (cf. § 3.1.(c)).
For callin modifiers see below (§ 4.2.).

(d) Multiple base methods
Base method designators may furthermore enumerate a list of methods. If multiple
base methods are bound in one callin declaration generally all signatures in this
binding must be conform.
However, extraneous parameters from base methods may be ignored at the role.
For result types different rules exist, depending on the applied callin modifier (see
next).

TR 2007/03, TU-Berlin 43

§ 4.1. 4. CALLIN BINDING OTJLD v1.0

(e) Named callin bindin
Any callin binding may be labeled with a name. The name of a callin binding is used
for declaring precedence (§ 4.8.). A named callin binding overrides any inherited
callin binding (explicit and implicit (§ 1.3.1.)) with the same name.
It is an error to use the same callin name more than once within the same role class.

(f) Callin to final
When binding to a final base method, the enclosing role must be played by the exact
base class declaring the final method. I.e., callin binding to a final method inherited
from the base class’s super-class is not allowed. This is motivated by the fact that
no sub-class may have a version of a final method with different semantics.

(g) Declared exceptions
It is an error if a role method to be bound by callin declares in its throws clause
any exceptions that are not declared by the corresponding base method(s).

Callin modifiers (before, after, replace)§ 4.2.
(a) Method composition

The kind of method composition is controlled by adding one of the modifiers before,
after or replace after the "<-" token of the binding declaration.

(b) Additive composition
The before and after modifiers have the effect of adding a call to the role method
at the beginning or end of the base method, resp.
In this case no data are transferred from the role to the base, so if the role method
has a result, this will always be ignored.

Listing 16: Example code (Callin):
1 team c l a s s Company {
2 p r o t e c t e d c l a s s Employee p layedBy Person {
3 p u b l i c v o i d r e c a l c u l a t e I n c o m e () { . . . }
4 r e c a l c u l a t e I n c o m e <- after ha ve B i r thda y ; // callin binding
5 }
6 }

Line 4 declares a callin binding for the role method recalculateIncome() defined
in line 3. In combination with the role binding in line 2 this has the following effect:

• After every call of the method Person.haveBirthday the method
Company.recalculateIncome is called.

(c) Replacing composition
The replace modifier causes only the role method to be invoked, replacing the
base method.
In this case, if the base method declares a result, this should be provided by the role
method. Special cases of return values in callin bindings are discussed in § 4.3.(e)

(d) Callin methods
Role methods to be bound by a callin replacement binding must have the modifier
callin. This modifier is only allowed for methods of a role class.
A method with the callin modifier can only be called

44 TR 2007/03, TU-Berlin

Otjld v1.0 4.3. Base calls § 4.3.

• via a callin replace binding
• by a super or tsuper call from an overriding callin method.

It is illegal for a callin method
• to be called directly,
• to be bound as callout, and
• to be bound as callin using before or after

A callin method cannot override a regular method and vice versa, however, overriding
one callin method with another callin method is legal and dynamic binding applies
to callin method just like regular methods.
A callin method must not declare its visibility using any of the modifiers public,
protected or private. Since callin methods can only be invoked via callin bindings
such visibility control would not be useful.

Base calls § 4.3.B

→ Syntax § A.5.3
Role methods with a callin modifier should contain a base call which uses the special name
base in order to invoke the original base method (original means: before replacement).

(a) Syntax
The syntax for base calls is base.m(), which is in analogy to super calls. A base.m()
call must use the same name and signature as the enclosing method. This again
follows the rule, that roles should never explicitly use base names, except in binding
declarations.

(b) Missing base call
For each callin method, the compiler uses some flow analysis to check whether a
base call will be invoked on each path of execution (analysis is very similar to the
analysis for definite assignment regarding final variables - JLS §1618). The compiler
will issue a warning if a base call is missing either on each path (definitely missing)
or on some paths (potentially missing). Instead of directly invoking a base call, a
callin method may also call its explicit or implicit super version using super.m() or
tsuper.m() (see § 1.3.1.(f)). In this case the flow analysis will transitively include
the called super/tsuper version.

(c) Duplicate base call
If a callin method contains several base calls, the compiler gives a warning if this
will result in duplicate base call invocations on all paths (definitely duplicate) or on
some paths (potentially duplicate). Again super/tsuper calls are included in the flow
analysis (see 4.3(b)).

(d) Parameter tunneling
If a base method has more parameters than a callin method to which it is composed,
additional parameters are implicitly passed unchanged from the original call to the
base call (original means: before interception). I.e., a call base.m() may invisibly
pass additional parameters that were provided by the caller, but are hidden from the
role method.

18http://java.sun.com/docs/books/jls/third_edition/html/defAssign.html

TR 2007/03, TU-Berlin 45

http://java.sun.com/docs/books/jls/third_edition/html/defAssign.html
http://java.sun.com/docs/books/jls/third_edition/html/defAssign.html

§ 4.4. 4. CALLIN BINDING OTJLD v1.0

(e) Fragile callin binding
If a role method returns void, but the bound base method declares a non-void result,
this is reported as a fragile callin binding : The result can still be provided by the
base call, but omitting the base call may cause problems depending on the return
type:
• For reference return types null will be returned in this case.
• In the case of primitive return types this will cause a ResultNotProvidedException

at run-time.
It is an error if a callin method involved in a fragile callin binding has definitely no
base call.

Comment:
Base calls can occur in callin methods that are not yet bound. These methods have no idea

of the names of base methods that a sub-role will bind to them. Also multiple base methods
may be bound to the same callin method. Hence the use of the role method’s own name and
signature. The language implementation translates the method name and signature back to
the base method that has originally been invoked.

Listing 17: Example code (Base Call):
1 p u b l i c c l a s s V a l i d a t o r R o l e p layedBy Po in t {
2 callin v o i d c h e c k C o o r d i n a t e (i n t v a l u e) {
3 i f (v a l u e < 0)
4 base . c he c k C o o r d i na t e (− v a l u e) ;
5 e l s e
6 base . c he c k C o o r d i na t e (v a l u e) ;
7 }
8 c h e c k C o o r d i n a t e <− r e p l a c e setX , setY ;
9 }

Effects:

• Line 2 defines a callin method which is bound to two methods of the base class Point
(see line 8).

• The value passed to either setX or setY is checked if it is positive (line 3).

• Lines 4 and 6 show calls of the original method (base calls). While line 6 passes the
original value, in the negative case (line 4) the passed value is made positive.

Callin parameter mapping§ 4.4.
(a) General case parameter mapping

The rules for mapping callin parameters and result type are mainly the same as for
callout bindings (§ 3.2.) except for reversing the -> and <- tokens and swapping left
hand side and right hand side.
Callin bindings using before have no result mapping. For result in after callin
bindings see § 4.4.(c) below.

(b) Restrictions for callin replace bindings
The right-hand side of a parameter mapping may either be the simple name of a
base method argument without further computation, or an arbitrary expression not

46 TR 2007/03, TU-Berlin

Otjld v1.0 4.5. Lifting and lowering § 4.4.

containing any base method argument.
Each base method argument must either appear as a simple name in exactly one
parameter mapping or not be mapped at all. In the latter case, the original argument
is "tunneled" to the base call, meaning, the callin method does not see the argument,
but it is passed to the base method as expected.
If the base method declares a result, then

• if the role method also declares a result, result must be mapped to itself:
result -> result

• if the role method does not declare a result, an arbitrary expression may be
mapped to result:
expression -> result
If in this situation no result mapping exists, the result of the base call is "tun-
neled" and passed to the original caller (see fragile callin binding (§ 4.3.(e))
above).

These rules ensure that these bindings are reversible for the sake of base calls (§ 4.3.).
As stated above a fragile callin binding (§ 4.3.(e)) is not allowed with a callin method
that definitely has no base call (§ 4.3.(b)). A callin replace binding is not fragile if
it provides the base result using a result mapping.
A callin method bound with replace to a base method returning void must not declare
a non-void result.

(c) Mapping the result of a base method
In an after callin binding, the right-hand side of a parameter mapping may use the
identifier result to refer to the result of the base method.

(d) Multiple base methods
A callin binding listing more than one base method may use parameter mappings
with only the following restriction: if any base parameter should be mapped this
parameter must have the same name and type in all listed base method designators.
However, different parameter mappings for different base methods bound to the
same role method can be defined if separate callin bindings are used.

Lifting and lowering § 4.5.B

For basic definition see § 2.2. and § 2.3..
(The following rules are reverse forms of those from § 3.3.)

(a) Call target translation
Invoking a role method due to a callin binding first lifts the base object to the role
class of the callin binding, in order to obtain the effective call target. This is why
callin bindings cannot be defined in roles that are unliftable due to potential binding
ambiguity (see § 4.1.(b) above and § 2.3.4.(a)).

(b) Parameter translation
During callin execution, each parameter for which the role method expects a role
object is implicitly lifted to the declared role class.

(c) Result translation
Returning a role object from a callin method implicitly lowers this object.

TR 2007/03, TU-Berlin 47

§ 4.5. 4. CALLIN BINDING OTJLD v1.0

(d) Typing rules
A parameter mapping (implicit by parameter position or explicit by a with clause)
is well typed if the right hand side conforms to the left hand side, either by

• type equality
• implicit primitive type conversion
• subtype polymorphism
• translation polymorphism, here: lifting ;

however, within replace bindings step 1 of the smart lifting algorithm (§ 2.3.3.(a))
is not applicable

• or by a combination of the above.

A result mapping (implicit or explicit by a with clause) is well typed, if the value
at the left hand conforms to the right hand side according to the rules given above,
except that translation polymorphism here applies lowering instead of lifting.
These rules define translation polymorphism as introduced in § 2.3.(d).

(e) Role arrays
For arrays of roles as parameters § 2.3.(d) applies accordingly. For arrays as return
value § 2.2.(e) applies.

(f) Base calls
For base calls these rules are reversed again, i.e., a base call behaves like a callout
binding.

Overriding access restrictions§ 4.6.
Callin bindings may also mention inaccessible methods (cf. decapsulation § 3.4.). Due to the
reverse call direction this is relevant only for base calls within callin methods. Base calls
have unrestricted access to protected base methods. Accessing a base method with private or
default visibility is also allowed, but signaled by a compiler warning.

Comment:
A base call to an inaccessible base method is considered harmless, since this is the originally

intended method execution.

Callin binding with static methods§ 4.7.
The normal case of callin bindings refers to non-static methods on both sides (base and role).
Furthermore, in Java inner classes can not define static methods. Both restrictions are relaxed
by the following rules:

(a) Static role methods
A role class may define static methods (see also § 1.2.1.(f)).

(b) Binding static to static
A callin binding may bind a static role method to one or more static base methods.
It is, however, an error to bind a static base method to a non-static role method,
because such binding would require to lift a base object that is not provided.

48 TR 2007/03, TU-Berlin

Otjld v1.0 4.8. Callin precedence § 4.7.

(c) before/after
In addition to the above, before and after callin bindings may also bind a static
role method to non-static base methods.

(d) replace
In contrast to § 4.7.(c) above, a replace callin binding cannot bind a static role
method to a non-static base method.

The following table summarizes the combinations defined above:

<- base method
static non-static

role method static OK before/after: OK
replace: illegal

non-static illegal OK

(e) No overriding
Since static methods are not dynamically bound, overriding does not apply in the
normal semantics. Regarding callin bindings this has the following consequences
(assuming a role RMid played by BMid plus its super-class BSuper and its sub-class
BSub.
1. If a static base method BMid.m is bound by a callin binding this has no effect

on any method m in BSub.
2. If a callin binding mentions a method m which is not present in BMid but resolves

to a static method in BSuper the binding only affects invocations as BMid.m()
but not BSuper.m(). If the latter call should be affected, too, the callin binding
must appear in a role class bound to BSuper, not BMid.

3. In order to bind two static base methods with equal signatures, one being defined
in a sub-class of the other one, two roles have to be defined where one role refines
the playedBy clause of the other role (say: public class RSub extends
RMid playedBy BSub). Now each role may bind to the static base method
accessible in its direct base-class.

Callin precedence § 4.8.B

→ Syntax § A.8
If multiple callins from the same team refer to the same base method and also have the same
callin modifier (before, after or replace), the order in which the callin bindings shall be
triggered has to be declared using a precedence declaration.

(a) Precedence declaration
A precedence declaration consists of the keyword precedence followed by a list of
names referring to callin bindings (see § 4.1.(e) for named callin bindings).
A precedence declaration is only legal within a role or team class.

(b) Qualified and unqualified names
Within a role class a callin binding may be referenced by its unqualified name. A
precedence declaration in a team class must qualify the callin name with the name
of the declaring role class. A team with nested teams may concat role class names.

TR 2007/03, TU-Berlin 49

§ 4.8. 4. CALLIN BINDING OTJLD v1.0

Elements of a qualified callin name are separated by ".".
The callin binding must be found in the role specified by the qualifying prefix or in
the enclosing role for unqualified names, or any super class of this role (including
implicit super classes § 1.3.1.).

(c) Class based precedence
At the team level a precedence declaration may contain role class names without
explicitly mentioning callin bindings in order to refer to all callin bindings of the role.

(d) Multiple precedence statements
All precedence statements are collected at the outer-most team. At that level all
precedence declarations involving the same base method are merged using the C3
algorithm [3] (see p. 51). It is an error to declare incompatible precedence lists that
cannot be merged by the C3 algorithm.

(e) Binding overriding
Precedence declarations may conflict with overriding of callin bindings (see § 4.1.(e)):
For each pair of callin bindings of which one callin binding overrides the other one,
precedence declarations are not applicable, since dynamic binding will already select
exactly one callin binding.
It is an error to explicitly mention such a pair of overriding callin bindings in a prece-
dence declaration.
When a class-based precedence declaration implicitly refers to a callin binding that is
overridden by, or overrides any other callin binding within the same precedence dec-
laration, this does not affect the fact, that the most specific callin binding overrides
less specific ones.

Listing 18: Callin binding example
1 p u b l i c c l a s s LogLogin p layedBy Database {
2 c a l l i n v o i d l o g (S t r i n g what) {
3 System . out . p r i n t l n (" e n t e r " + what) ;
4 base . l o g (what . toLowerCase ()) ;
5 System . out . p r i n t l n (" l e a v e " + what) ;
6 }
7 v o i d l o g (S t r i n g what) <− r e p l a c e v o i d l o g i n (S t r i n g uid , S t r i n g passwd)
8 with { what <− u i d }
9 }

10 (new Database ()) . l o g i n ("Admin" , " Passwd ") ;

Effects: Provided the callin bindings are active (cf. § 5.) then:

• the call in line 10 is intercepted by method log of role LogLogin.

• the call target of log is a role of type LogLogin which is created by lifting the original
call target (of type Database) to LogLogin.

• only parameter uid is passed to log (bound to formal parameter what).

• within method log the base call (line 4) invokes the original method passing a modified
uid (converted to lower case, cf. line 4) and the unmodified password, which is hidden
from the callin method due to the parameter mapping in line 8.

50 TR 2007/03, TU-Berlin

Otjld v1.0 4.8. Callin precedence § 4.8.

Open issues:
The query language for specifying sets of base methods (§ 4.1.(d)) has not been finalized

yet. In this version of the OTJLD § 8. acts as a placeholder for the section that will define a
join point query language in the future.

References:

[3] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, P. Tucker With-
ington. A monotonic superclass linearization for Dylan. OOPSLA ’96: Proceedings of the
11th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 69-82, 1996.

TR 2007/03, TU-Berlin 51

§ 4.8. 4. CALLIN BINDING OTJLD v1.0

52 TR 2007/03, TU-Berlin

Otjld v1.0 § 5.

Team Activation § 5.B

The concept of Activation
Binding activation All callin bindings of a team only have effect if the team is active.

Activation may be caused by explicit statements and also happens implicitly at certain
points during program execution.

Guard predicates Callin bindings can further be controlled using guard predicates, which can
be attached to roles and teams at different levels. If a guard predicate evaluates to false,
all affected callin bindings are disabled.

Effect of team activation § 5.1.B

Activating a team instance has the effect of enabling all its callin bindings. All effects defined
in § 4. apply only if a corresponding team instance is active.
The order of team activation controls the order of callin executions. If more than one team
intercepts calls to the same base method, the most recently activated team has highest priority
in that its before or replace callins are executed first while its after callins are executed last.

Global vs. thread local team activation § 5.1.1.B

While thread local activation only enables the callin bindings of a team instance for a certain
thread, global activation activates the team instance for all threads of the application.

Effect on garbage collection § 5.1.2.B

Any active team is referenced by internal infrastructure. Thus, a team cannot be reclaimed
by the garbage collector while it is active.

Explicit team activation § 5.2.B

(a) Activation block
A team can be activated thread local by the block construct

w i t h i n (myTeam) { stmts }

If stmts has only one statement this can be abbreviated to

w i t h i n (myTeam) stmt

In these statements, myTeam must denote a team instance. For the time of executing
this block, this team instance is activated for the current thread, which has entered
the within block.
The within block statement guarantees that it leaves the team in exactly the same
activation state as it was in when entering this block. This includes the cases of
exceptions, meaning that deactivation will also occur if the execution of the block
terminates abnormally.

TR 2007/03, TU-Berlin 53

§ 5.2. 5. TEAM ACTIVATION OTJLD v1.0

(b) Imperative activation
Each team class inherits methods from the predefined class org.objectteams.Team
(super class of all team classes) to control team activation disregarding the block
structure of the program. The methods activate() and deactivate() are used
to activate and deactivate a team instance for the current thread.
If a team should be de-/activated for another thread this can be done by the meth-
ods activate(Thread aThread) and deactivate(Thread aThread). In order to
achieve global activation for all threads the predefined constant Team.ALL_THREADS
is passed to these methods (e.g. activate(Team.ALL_THREADS)).
Note, that this methods make no guarantees with respect to exceptions.

(c) Multiple and mixed activations

• If activate() is invoked on a team instance that has been explicitly activated
before, this statement has no effect at all (note the difference in § 5.3.(a) below).
The same applies to deactivating an inactive team.

• If a team was already active when entering a within block, it will remain active
after leaving the block.

• If the team was active on entry of a within block and if deactivate() is
invoked on the same team instance from within the within block, leaving the
block will re-activate the team.

Implicit team activation§ 5.3.
When the control flow is passed to a team or one of its roles, the team is implicitly activated
for the current thread. So a programmer may in general assume, that whenever a role forwards
calls to its base object via callout, the callin bindings of the same role will be active at that
time. Exceptions to this rule have to be programmed explicitly.

(a) Team level methods
While executing a team level method, the target team is always active. Activation
is reset to the previous state when leaving the team method, unless the team has been
explicitly activated during execution of the team method by a call to activate().
Explicit activation is stronger than implicit activation and thus persists after the
team level method terminates. Ie., leaving a team level method will never reset an
explicit activation.

(b) Methods of externalized roles
Invoking a method on an externalized role (see § 1.2.2.) also has the effect of tem-
porary activation of the team containing the role for the current thread. Regarding
deactivation the rule of § 5.3.(a) above applies accordingly.

(c) Nested teams
Implicit activation has additional consequences for nested teams (see § 1.5.):
• Implicit activation of a team causes the activation of its outer teams.
• Implicit deactivation of a team causes the deactivation of its inner teams.

Note that among the different mechanisms for activation, within is strongest, followed by
(de)activate(), weakest is implicit activation. In this sense, explicit imperative (de)activation

54 TR 2007/03, TU-Berlin

Otjld v1.0 5.4. Guard predicates § 5.4.

may override the block structure of implicit activation (by explicit activation within a team
level method), but not that of a within block (by deactivation from a within block).

Guard predicates § 5.4.B

→ Syntax § A.7
The effect of callins can further be controlled using so called guard predicates. Guards appear
at four different levels:

• callin method binding

• role method

• role class

• team class

Guards can be specified as regular guards or base guards, which affects the exact point in
the control flow, where the guard will be evaluated.

(a) General syntax for guards
A guard is declared using the keyword when followed by a boolean expression in
parentheses:

when (predicateExpression)

Depending on the kind of guard different objects are in scope using special identifiers
like this, base.
Any predicate expression that evaluates to true enables the callin binding(s) to
which it applies. Evaluation to false disables the callin binding(s).

Regular guards § 5.4.1.B

This group of guards evaluates within the context of a given role. These guards are evaluated
after a callin target is lifted and before a callin bound role method is invoked.

(a) Method binding guards

A guard may be attached to a callin method binding as in:

v o i d ro leMethod (i n t i r) <− a f t e r v o i d baseMethod (i n t i b)
when (i r > MyTeam . t h i s . t h r e s h o l d) ;

Such a guard only affects the callin binding to which it is attached, i.e., this specific
callin binding is only effective, if the predicate evaluates to true.
The following values are within the scope of the predicate expression, and thus can
be used to express the condition:

• The role instance denoted by this.
Features of the role instance can also be accessed relative to this with or
without explicit qualifying this.

• The team instance denoted by a qualified this reference as in MyTeam.this.

TR 2007/03, TU-Berlin 55

§ 5.4.1. 5. TEAM ACTIVATION OTJLD v1.0

• If the callin binding includes signatures (as in the example above): Parameters
of the role method.
If parameter mappings are involved, they will be evaluated before evaluating the
guard.
Furthermore, if the modifier of the callin binding is after: The result (denoted
by the special identifier result) of the role method, if it is not void.

(b) Method guards

A method guard is similar to a method binding guard, but it applies to all callin
method bindings of this method.
A method guard is declared between the method signature and the method body:

v o i d ro leMethod (i n t i r)
when (i r > MyTeam . t h i s . t h r e s h o l d) { body statements }

(c) Role level guards

When a guard is specified at the role level, i.e., directly before the class body of a
role class, it applies to all callin method bindings of the role class:

p r o t e c t e d c l a s s MyRole
when (v a l u e > MyTeam . t h i s . t h r e s h o l d)

{
i n t v a l u e ;
other class body declarations

}

The following values are within the scope of the predicate expression:
• The role instance denoted by this (explicit or implicit, see above). Thus, in

the example value will be interpreted as a field of the enclosing role.
• The team instance denoted by a qualified this reference as in MyTeam.this

(d) Team level guards

A guard specified in the header of a team class may disable the callin bindings of all
contained role classes. The syntax corresponds to the syntax of role level guards.
The only value directly available within team level guard is the team instance (de-
noted by this) and its features.

Of course all guards can also access any visible static feature of a visible class.
Even if a guard has no direct effect, because, e.g., a role class has no callin bindings (maybe not
even a role-base binding), predicates at such abstract levels are useful, because all predicates
are inherited by all sub classes (explicit and implicit).

Base guards§ 5.4.2.

The intention behind base guards is to prevent lifting of a callin-target if a guard evaluates to
false and thus refuses to invoke the callin bound role method. Using base guards it is easier
to prevent any side-effects caused by a callin binding, because lifting could cause side-effects
at two levels:

• Creating a role on-demand already is a side-effect (observable e.g. by the reflective
function hasRole (§ 6.1.))

56 TR 2007/03, TU-Berlin

Otjld v1.0 5.4. Guard predicates § 5.4.2.

• Role creation triggers execution of a role constructor (see custom lifting constructor
(§ 2.3.1.(c))) which could produce arbitrary side-effects.

Both kinds of side-effects can be avoided using a base guard which prevents unnecessary
lifting.

Future feature:
The OT/J compiler will include a read-only analysis, that will check whether all predicate

expressions in guards are actually free of side-effects.

Any guard (5.4.1 (b)-(e)) can be turned into a base guard by adding the modifier base as in:

p r o t e c t e d c l a s s MyRole p layedBy MyBase
base when (base . v a l u e > MyTeam . t h i s . t h r e s h o l d)

{
class body declarations

}

However, different scoping rules apply for the identifiers that can be used in a base guard:

(a) Base object reference

In all base guard predicates the special identifier base can be used to denote the
base object that is about to be lifted.

(b) Method binding guards

A base method binding guard may access parameters as passed to the base method.
Parameter mappings are not considered.
Additionally, for after callin bindings, the identifier result may be used to refer
to the result of the base method (if any).
Note:

In order to achieve the same effect of accessing the base method’s result, a reg-
ular binding guard (not a base guard) must use a suitable parameter mapping (see
§ 4.4.(c)).

(c) Method guards

In contrast to regular method guards, a base guard attached to a role method cannot
access any method parameters. See the next item (d) for values that are actually in
scope.

(d) Role level guards

Role level base guards may use these values:
• The base instance using the special identifier base.
• The team instance using a qualified this references (MyTeam.this).

(e) Team level guards

Team level base guards have the same scope as role level base guards (d). However,
the type of the role instance is not known here, i.e., here base has the static type
java.lang.Object.

TR 2007/03, TU-Berlin 57

§ 5.4.3. 5. TEAM ACTIVATION OTJLD v1.0

(f) Unbound roles

In contrast to regular guards, base guards cannot be attached to unbound role classes
nor to their methods.
Only team level base guards are independent of role binding.

Multiple guards§ 5.4.3.

Due to the different ranges of applicability different guards may affect the same method
binding. In that case all applicable guards are conjoined using a logical and.
Any guard is interpreted as the conjunction of these predicates (if present):

• The direct predicate expression of the guard.

• The next outer guard along the chain method binding -> method -> role level -> team
level

• The guard at the same level that is inherited from the implicit super role.

• The guard at the same level that is inherited from the explicit super role.

58 TR 2007/03, TU-Berlin

Otjld v1.0 5.5. Unanticipated team activation § 5.5.

Listing 19: Example code (Guard Predicates):
1 p u b l i c team c l a s s ATM {
2 p r i v a t e Bank myBank ;
3 p u b l i c c l a s s Fore ignAccount p layedBy Account
4 base when (!ATM. t h i s . myBank . e q u a l s (base . getBank ()))
5 {
6 c a l l i n v o i d deb i tWi thFee (i n t amount) {
7 base . deb i tWi thFee (f e e+amount) ;
8 }
9 v o i d deb i tWi thFee (i n t i) <− r e p l a c e v o i d d e b i t (i n t amount)

10 base when (amount < 1 0 0 0) ;
11 }
12 }

Effects:
The team in this example causes that an additional fee has to be payed while debiting less
than 1000 Euros from a "foreign" account.

• The base guard in line 4 ensures that Account objects only get ForeignAccount roles,
if they belong to a different bank than the surrounding ATM team.
It accesses the bank of the base via the base identifier.

• The method binding guard in line 10 restricts the callin to debitWithFee to calls where
the base method argument amount is lower than 1000.

• A call to Account.debit causes a replace callin to debitWithFee only if both predicates
evaluate to true.

Unanticipated team activation § 5.5.B

If an application should be adapted unanticipatedly by one or more teams, this can be achieved
without explicitly changing the program code of this application.

General activation via config file:
Instead of adding the team initialization and activation code to the main program, it is
possible to add the respective teams via a config file. Every line of this text file contains the
fully qualified name of a compiled team, which has to be available on the classpath. For the
instantiation of these teams the default constructor is used, which means adding a team to an
application this way requires the team to provide a default constructor. The activation order
(see § 5.1.) for these teams corresponds to the order in which they are listed in the config file.
Lines starting with a ’#’ denote comment lines.

Listing 20: Example config file:
Conf i g f i l e f o r an ObjectTeams a p p l i c a t i o n :
mypackage1.MyTeam1
. . .
mypackageM.MyTeamN

To get this config file recognized by the application the VM argument
’-Dot.teamconfig=<config_file_name>’
has to be used when starting the application.

TR 2007/03, TU-Berlin 59

§ 5.5. 5. TEAM ACTIVATION OTJLD v1.0

Note:
In the ObjectTeams Development Tooling (OTDT) teams are activated unanticipatedly

via a special tab in the "Run-Configuration" (see OTDT features19), instead.

Activation adjustment example:
Teams added via the config file mechanism are activated by default. Because no reference
to them is stored anywhere, it is not possible to deactivate them later. If deactivation of
unanticipated added teams is required, this can be achieved by adding a manager team via
config file and encapsulate the actual functionality in another team managed by the manager
team. This way a functional team can be activated and deactivated as needed.

Listing 21: Example code (Activation Adjustment):
1 p u b l i c team c l a s s MyManagerTeam {
2 p r i v a t e Funct iona lTeam myFunctionalTeam = new Funct iona lTeam () ;
3 p r o t e c t e d c l a s s MyRole p layedBy MyApp l i ca t i on {
4 v o i d s t a r t A d a p t i o n () { myFunctionalTeam . a c t i v a t e () ; }
5 s t a r t A d a p t i o n <− b e f o r e s ta r tMethod ;
6 v o i d s topAdapt i on () { myFunctionalTeam . d e a c t i v a t e () ; }
7 s topAdapt i on <− a f t e r stopMethod ;
8 }
9 }

Con f i g f i l e f o r the manager team example :
MyManagerTeam

Effects:

• startMethod and stopMethod are methods which demand the activation and deactiva-
tion respectively.

• If the activation/deactivation depends on other conditions these can be checked in addi-
tion.

19http://www.objectteams.org/distrib/features.html#execution

60 TR 2007/03, TU-Berlin

http://www.objectteams.org/distrib/features.html#execution
http://www.objectteams.org/distrib/features.html#execution

Otjld v1.0 § 6.

Object Teams API § 6.B

The role of predefined types and methods
Application Programming Interface (API) Some features of ObjectTeams/Java are sup-

ported without introducing new syntax but by predefined types and methods.

Reflection § 6.1.B

Object Teams supports reflection with respect to teams, roles, and role-base relationships.

(a) Interface to the role registry
Each team instance internally has a registry of known role objects indexed by their
base object. Programmers may make use of this registry using the following reflective
methods defined in org.objectteams.Team:
boolean hasRole (Object aBase) ; This method checks whether a role for

the passed base object already exists in the target team.
boolean hasRole (Object aBase, Class expectedRole) ; This method checks

whether a instance of type expectedRole as a role for the passed base object
aBase already exists in the target team. The role may also be of any subtype
of the specified role type.

Object getRole (Object aBase) ; If the passed base object aBase already
has a role in the target team, this role is returned. Otherwise null is returned.

Object getRole (Object aBase, Class expectedRole) ; If the passed base
object aBase already has a role of type expectedRole in the target team, this
role is returned. Otherwise null is returned.

Object[] getAllRoles () ; Retrieves all existing (registered) roles in the target
team.
This method uses internal structures of weak references. For that reason it may
return role instances which were about to be reclaimed by the garbage collector.
If performance permits, it is thus advisable to always call System.gc() prior
to calling getAllRoles() in order to achieve deterministic results (see also
§ 2.1.(f)).

Object[] getAllRoles (Class expectedRole) ; Retrieves all existing (reg-
istered) roles of type expectedRole in the target team. Class expectedRole
must be a top-most bound role, ie., it must have a playedBy clause and no
regular super class with a playedBy clause.
Note, that the returned array is actually an array of Object, ie., elements have
to be cast to exepctedRole individually.
See the note about garbage collection above.

void unregisterRole (Object aRole) ; This method unregisters the passed
role object from the target team. Thus the corresponding base looses this role.
After calling this method the role should no longer be used.

void unregisterRole (Object aRole, Class roleClass) ; This method
unregisters the passed role object from the target team. Thus the corresponding
base looses this role. After calling this method the role should no longer be used.
The only difference to the previous method is improved speed because no search
for the corresponding registry has to be performed.

TR 2007/03, TU-Berlin 61

§ 6.1. 6. OBJECT TEAMS API OTJLD v1.0

It is desirable and possible to use these methods within guards (see § 5.4.). These
methods allow to write the specification of guards in a more concise and more
expressive way. Determined by the signature, the first four methods can only be
used in a base-level guard (§ 5.4.2.) because they require a reference to a base
object.

Listing 22: Example code (Guards and Reflection):
1 p u b l i c team c l a s s S p e c i a l C o n d i t i o n s {
2 p u b l i c v o i d p a r t i c i p a t e (Account as BonusAccount ba) {}
3 p u b l i c c l a s s BonusAccount p layedBy Account
4 base when (S p e c i a l C o n d i t i o n s . t h i s . hasRole(base , BonusAccount . c l a s s))
5 {
6 c a l l i n v o i d c r e d i t B o n u s (i n t amount) {
7 base . c r e d i t B o n u s (amount + bonus) ;
8 }
9 v o i d c r e d i t B o n u s (i n t amount) <− r e p l a c e v o i d c r e d i t (i n t i)

10 base when (i > 1 0 0 0) ;
11 }
12 }

Effects:
This teams provides a bonus system for registered Accounts. Every time an amount
of more than 1000 is deposited to a registered account, additional 1% of the amount
is credited.

• The team level method participate in line 2 uses declared lifting (see § 2.3.2.)
to allow the passed Account object to participate the bonus system provided
by the SpecialConditions team.

• The base guard in line 4 uses the reflective method hasRole to check whether
the base object already has a role of type BonusAccount in the surrounding
team. The expression BonusAccount.class returns the java.lang.Class
object representing the role BonusAccount (see JLS §15.8.220). This guard
ensures, that only accounts explicitly registered via participate are ever dec-
orated with a role of type BonusAccount.

• The method binding guard in line 10 restricts the callin to creditBonus to calls
where the base method argument amount is greater than 1000.

(b) Behavioral reflection
The following reflective methods defined in org.objectteams.Team can be used to
inspect the dynamic behavior of a team:

boolean isExecutingCallin () ; This method is used to inspect whether a
control flow has already been intercepted by at least one callin binding of the
current team. It can be used to avoid undesirable re-entrance to a team.

boolean isActive () ; This method checks whether the team instance is active
for the current thread.

boolean isActive (Thread aThread) ; This method checks whether the team
instance is active for the thread aThread.

62 TR 2007/03, TU-Berlin

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530

Otjld v1.0 6.2. Other API Elements § 6.2.

(c) Class literals for roles
The Java syntax for so-called class literals, MyClass.class (see JLS §15.8.221) can
be used for role types with slightly changed semantics: Role types are virtual types
(§ 1.3.1.) that are bound dynamically (§ 1.3.1.(e)). This applies to role class literals,
too. From this follows the constraint that a role class literal can only be used within
the non-static context of a team, ie., for evaluating a role class literal an enclosing
team instance must be in scope.
Unlike regular type checking for role types, the class literal itself does not have a
dependent type. Thus type checking of calls to methods like hasRole(Object,
Class) cannot detect, whether the Class instance has actually been obtained from
the correct team instance. Any attempt to pass a class that is not known as a bound
role within the given team results in an IllegalArgumentException at run-time.

Other API Elements § 6.2.B

(a) Interfaces for role encapsulation
A set of pre-defined types exist that do not extend java.lang.Object and have no
features except the operators == and !=.
Note:

The JLS defines that each interface declares all methods defined in java.lang.Object
(JLS §9.222) and also each object referenced by an interface type can be widened to
java.lang.Object. Compilers commonly implement this by declaring java.lang.Object
the super-type of all interfaces. Such implementation has no visible difference with
respect to the more complex definition in the JLS.
These predefined types are
org.objectteams.IConfined regular interface
org.objectteams.Team.IConfined role interface
org.objectteams.Team.Confined role class
These types provide no new functionality but inheriting from these types influences
the semantics with respect to encapsulation. The purpose and usage of these types
is described in § 7..

(b) Interface for explicit lowering
The following role interface exists for the purpose of allowing explicit lowering:
org.objectteams.Team.ILowerable role interface
This interface was introduced in detail in § 2.2.(d).

(c) Team activation methods
Every team can be activated and deactivated by predefined methods of the class
org.objectteams.Team.
activate() and activate(Thread th) Methods for activation of a team
deactivate() and deactivate(Thread th) Methods for deactivation of a team
The usage of these Methods is described in § 5.2.(b).

21http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530
22http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#32392

TR 2007/03, TU-Berlin 63

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#32392
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#251530
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#32392

§ 6.2. 6. OBJECT TEAMS API OTJLD v1.0

(d) Exceptions
The following Exceptions can be thrown during the execution of an ObjectTeam/-
Java program:
ResultNotProvidedException Thrown if a replace callin without a base call does

not provide the necessary (primitive type) base result (see § 4.3.(e)).
LiftingFailedException Thrown if an actual ambiguity occurs during lifting (see

§ 2.3.4.(c)).
WrongRoleException Thrown during lifting if the base object has, with respect to

the same team instance, previously been lifted to a role type that is not conform
to the currently requested type (see § 2.3.4.(d) and § 2.4.3.).

DuplicateRoleException Thrown during explicit role creation, if a new role is
created for a base object, which already has a role of the required type in the
given team (see § 2.4.1.(c)).

RoleCastException Thrown during cast of an externalized role, if the casted
expression is anchored to a different team instance than the cast type (see
§ 1.2.4.(b)).

64 TR 2007/03, TU-Berlin

Otjld v1.0 § 7.

Role Encapsulation § 7.B

Concepts of encapsulation
Protected roles A role with visibility protected cannot be externalized, which means its

type cannot be used outside the declaring team (§ 1.2.3.).

Confined roles Confined roles are encapsulated even stricter than protected roles: the com-
piler will ensure that by no means any object outside the enclosing team will ever have a
reference to a confined role.

Opaque roles Opaque roles build on the guarantees of confined roles but allow to be shared
in a limited way such that no information is exposed.

Opaque roles § 7.1.B

The purpose of the two IConfined interfaces (see § 6.2.(a)) is to define opaque roles:
Any role implementing IConfined can be externalized using this type, such that external
clients cannot access any features of the role. The type IConfined exposes no features and
references of this type cannot be widened to any type not even to java.lang.Object.
If the actual role type is furthermore invisible outside the team (by not declaring it public),
it is perfectly safe to externalize such roles using type IConfined (which is a public interface)
and pass them back to the owning team. The encapsulation of the team is in no way breached
by externalizing opaque roles, which can only be used as a handle into internal state of the
team.
The difference between the two mentioned interfaces is that Team.IConfined requires to use
this type or any subtype as externalized role. Such a reference contains the information of the
enclosing team. Even stricter control can be imposed using the regular interface IConfined.
Here not even team membership is visible to clients using a reference of this type.

Confined roles § 7.2.B

Subclassing Team.Confined with a protected class yields a role class to which no object
outside the team will ever have a reference. The point here is that a role class with a regular
super class will widen the this reference to the super class when executing a method from this
class. Within such a method a danger of leaking the reference exists, because the inherited
method could pass the this reference to another object. Such leaking of the this reference
would break encapsulation of a role object that should only be accessible within the enclosing
team.
Subclasses of Team.Confined do not inherit any methods that have the danger of leaking
this.

(a) Inhibition of overriding
The types Team.IConfined and Team.Confined cannot be overridden (cf. § 1.3.1.(c)).

Upcoming:
Only by widening to a non-role super-type, a role instance can be accessed from

outside the team. In the future this can be inhibited by restricted inheritance.

TR 2007/03, TU-Berlin 65

§ 7.2. 7. ROLE ENCAPSULATION OTJLD v1.0

Listing 23: Example code (Role Encapsulation):
1 p u b l i c team c l a s s Company {
2 p r i v a t e HashMap< S t r i n g , Employee> employees ;
3 . . .
4 p r o t e c t e d c l a s s Employee implements IConfined {
5 v o i d pay (i n t amount) { . . . }
6 . . .
7 }
8 p u b l i c IConfined getEmployee (S t r i n g ID) {
9 r e t u r n employees . get (ID) ; // implicit widening to IConfined

10 }
11 p u b l i c v o i d payBonus (IConfined emp , i n t amount) {
12 ((Employee)emp) . pay (amount) ; // explicit narrowing
13 }
14 }

15 p u b l i c c l a s s Main {
16 p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {
17 f i n a l Company comp = new Company () ;
18 IConfined<@comp> emp = comp . getEmployee ("emp1") ;
19 //System.out.println(emp); <– forbidden!
20 comp . payBonus (emp , 1 0 0) ;
21 }
22 }

Effects:

• The protected role Employee implements the above described interface IConfined
and therefore becomes opaque (line 4).

• Methods sharing such an opaque role with the outside of the enclosing team have to use
the type IConfined (line 8, line 11).

• It is possible to obtain an instance of such a role by using the type IConfined (line 18).

• Trying to access any feature of this instance, for example toString(), will cause a
compilation error (line 19).

• Passing the opaque role reference back into the team works well (line 20).

• Inside the team some conversions between the types IConfined and the intrinsic role
type Employee may be necessary (line 9 and 12).

66 TR 2007/03, TU-Berlin

Otjld v1.0 § 8.

Join Point Queries § 8.B

Defining sets of join points for interception
join point In ObjectTeams/Java a join point is considered to be an element of the program.

A meta model exists which defines the kinds of join points that can be identified.

join point interception The purpose of identifying join points is to intercept program exe-
cution at these points by means of callin bindings.

join point query Sets of join points are defined using functional queries of the program’s
reflective representation.

pointcuts Dynamic "pointcuts" comparable to AspectJ’s cflow or even the Trace-Matches
approach are not subject to the join point language of OT/J. These features will be
added at a different level of abstraction. Note, that guard predicates (§ 5.4.) subsume
the dynamic capabilities of the pointcuts if, target, this, args.

Join point queries § 8.1.B

This section will describe the query language used to define sets of join points. As of
version 1.0.0 of the OTDT this query language is not yet supported.

Query expressions § 8.2.B

OT/J meta model § 8.3.B

TR 2007/03, TU-Berlin 67

§ 8.3. 8. JOIN POINT QUERIES OTJLD v1.0

68 TR 2007/03, TU-Berlin

Otjld v1.0 § 9.

Value Dependent Classes § 9.B

Generalizing externalized roles
Type Value Parameter In addition to regular generics, a class may declare parameters that

represent an object value. Such a value parameter is called the type anchor for this
class, the class’s type is said to be anchored to this parameter.

Value Dependent Classes A class that declares one or more value parameters depends on
the runtime instance(s) denoted by its anchor(s).

Externalized Roles The concept of externalized roles (§ 1.2.2.) is a special case of the con-
cepts presented here.

Defining classes with value parameters § 9.1.B

→ Syntax § A.9.1

(a) Value parameter declaration

Within the angle brackets that mark the parameters of a generic class also value
parameters can be declared. In contrast to a type parameter, a value parameter is
denoted as a pair of two identifiers: a type and a free name, e.g.,

c l a s s MyClass<YourType aName> ; { . . .

Note that value parameters are valid for classes only, not for interfaces.

(b) Value parameter application

Within the given class (MyClass) the parameter name (aName) can be used like
a final field of the given type (YourType). In contrast to regular final fields the
assignment to this name occurs even before the constructor is executed.

(c) Role types as dependent types

Any role type can be interpreted as a value dependent type, however, in the dec-
laration of a role type the value parameter remains implicit: it is identical to the
enclosing team instance.

Using classes with value parameters § 9.2.B

→ Syntax § A.9.2
When using a class which declares one or more value parameters (type anchors) a corresponding
anchor value has to be provided.

Parameter substitution § 9.2.1.B

Substitution of a type anchor of a class MyClass<YourType p> is denoted as MyClass<@v>.
In this term v must be a value which is conform to the declaration of the value parameter
"YourType p", ie., v must have the static type YourType.
The value passed for substituting a type anchor must be a path of variables declared as final.
Obviously, only the first element in such a path can be a local variable or a method argument,
all other elements have to be fields. The reason for requiring final variables is in type checking
as discussed next.

TR 2007/03, TU-Berlin 69

§ 9.2.2. 9. VALUE DEPENDENT CLASSES OTJLD v1.0

Note:
Externalized roles as defined in § 1.2.2.(b) are a special case of types with a value parameter,

where the value is an instance of the enclosing team.

Type conformance§ 9.2.2.

Two value dependent types (anchored types) are considered conform only if the anchors of
both types refer to the same object(s). The compiler must be able to statically analyze this
anchor identity.

(a) Substitutions for type anchors

Only two substitutions are considered for determining anchor identity:
1. If a method signature uses this as the anchor of any of its types, type checking

an application of this method performs the following substitutions:
A simple this expression is substituted by the actual call target of the method
application.
A qualified Outer.this expression is substituted by the corresponding enclosing
instance of the call target.

2. Assignments from a final identifier to another final identifier are transitively
followed, i.e., if t1, t2 are final, after an assignment t1=t2 the types C<@t1>
and C<@t2> are considered identical. Otherwise C<@t1> and C<@t2> are incom-
mensurable.
Attaching an actual parameter to a formal parameter in a method call is also
considered as an assignment with respect to this rule.

(b) Conformance of raw types

After anchors have been proven identical, the raw types are checked for compatibility
using the standard Java rules.

Restrictions and limitations§ 9.3.
(a) No overriding

Types with value parameters that are declared outside a team cannot be overridden,
as roles can be. Therefor, implicit inheritance does not apply for these types.

(b) Only first parameter

Currently only the first parameter of a class may be a value parameter. This restric-
tion may be removed in the future.

70 TR 2007/03, TU-Berlin

Otjld v1.0 § A.

ObjectTeams/Java Syntax § A.B

Notation
The following grammar rules extend the Java grammar given in the Java Language Speci-
fication23. We adopt the conventions of printing non-terminal symbols in italic font (e.g.,
ClassDeclaration), and terminal symbols in roman font (e.g., class). Names printed in
black refer to definitions from the original Java grammar. Object Teams additions are printed
in blue boldface. For those rules that simply add a new option to an existing rule, the original
options are indicated by an ellipse (...).

Keywords § A.0.B

The keywords introduced by OT/J have different scopes, which means outside their given
scope these keywords can be used for regular identifiers. Only these names are keywords
unconditionally:

r e a d o n l y , team , w i t h i n

Scoped keywords § A.0.1.B

The following names are keywords in OT/J only if they appear within a team or role class,
ie., after the keyword team has been recognized:

as , base , c a l l i n , playedBy , precedence , t s u p e r , with , when

These names are keywords only in the context of a callin or callout binding respectively
(→ Syntax § A.3):

a f t e r , be fo re , r e p l a c e , get , s e t

Inheriting scoped keywords § A.0.2.B

While regular Java classes may use the scoped keywords (→ Syntax § A.0.1) of OT/J freely,
it is an error if a role class inherits a feature whose name is a scoped keyword.

Internal names § A.0.3.B

Compiler and runtime environment generate internal methods and fields which start with the
prefix _OT$. It is illegal to use any of these methods and fields within client code.

Class definitions § A.1.B

Class definitions add two new keywords team and playedBy. Classes which use these keywords
are called teams and bound roles, respectively. Any class that inherits from a bound role
class (either by an extends clause or by implicit inheritance, cf. § 1.3.1.(c)) is again a bound
role class.

23http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html

TR 2007/03, TU-Berlin 71

http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html

§ A.2. A. OBJECTTEAMS/JAVA SYNTAX OTJLD v1.0

§ A.1.1
ClassDeclaration:

[Modifiers] [team] class Identifier
å [extends Type] [implements TypeList]
å [playedBy Type] [Guard] ClassBody

Contextual constraints:

(a) A class which has a playedBy clause (a bound role class) may not be declared static
and must be directly contained in a class that has the team modifier (a team class).

(b) A class which inherits from a team class must have the team modifier, too.

(c) A class which has a guard (see § 5.4.) must be a team or a role.

Modifiers§ A.2.
The rule for method modifiers adds one keyword: callin:

§ A.2.1
Modifier:

...
callin

Contextual constraints:

(a) The class of a method which has the callin modifier may not be declared static and
must be directly contained in a team class.

(b) A method that has the callin modifier may not appear in an explicit method call (rule
Apply in JLS).

Method bindings§ A.3.
The rule of items declarable in a class body is augmented by method bindings:

§ A.3.1
ClassBodyDeclaration:

...
CalloutBinding
CallinBinding

§ A.3.2
CalloutBinding:

MethodSpec CalloutKind MethodSpec CalloutParameterMappings
MethodSpec CalloutKind CalloutModifier FieldSpec

§ A.3.3
Callin binding:

[Identifier :] MethodSpec <- CallinModifier MethodSpecs
å [Guard] CallinParameterMappings

§ A.3.4
MethodSpec:

Identifier
ResultType MethodDeclarator

Note, that ResultType and MethodDeclarator are not explicit in the overall syntax of the
Java language specification. For convenience we refer to the definition in section 8.4. Method
Declarations24 of the Java language specification.

24http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40420

72 TR 2007/03, TU-Berlin

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40420
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40420
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#40420

Otjld v1.0 A.4. Parameter mappings § A.4.

§ A.3.5
MethodSpecs:

MethodSpec [, MethodSpecs]

§ A.3.6
CalloutKind:

->
=>

§ A.3.7
CallinModifier:

before
after
replace

§ A.3.8
CalloutModifier:

get
set

§ A.3.9
FieldSpec:

[Type] Identifier
Contextual constraints:

(a) CalloutBindings and CallinBindings may occur only in bound role classes.

(b) A CalloutBinding or CallinBinding may not mix identifiers and full signatures
(MethodDeclarationHead) for its method specifiers (MethodSpec).
Binding a full method signature to a field requires the FieldSpec to include the Type.

(c) The method specifier at the left hand side of a CallinBinding which has the replace
modifier must refer to a method that has the callin modifier.

Parameter mappings § A.4.B

§ A.4.1
CalloutParameterMappings:

with { CalloutParameterMappingList [,] }
;

§ A.4.2
CallinParameterMappings:

with { CallinParameterMappingList [,] }
;

§ A.4.3
CalloutParameterMappingList:

CalloutParameterMapping [, CalloutParameterMappingList]

§ A.4.4
CallinParameterMappingList:

CallinParameterMapping [, CallinParameterMappingList]

§ A.4.5
CalloutParameterMapping:

Expression -> Identifier
result <- Expression

§ A.4.6
CallinParameterMapping:

Identifier <- Expression
Expression -> result

Note:
By defining ";" as an option for parameter mappings, the grammar enforces that method

bindings without a parameter mapping are terminated by a ";". Also method bindings with
parameter mappings may optionally be terminated by a ";", which in that case is interpreted
as an empty member declaration, following the same pattern how non-abstract methods in
Java may optionally have a trailing ";".

TR 2007/03, TU-Berlin 73

§ A.5. A. OBJECTTEAMS/JAVA SYNTAX OTJLD v1.0

Statements§ A.5.

§ A.5.1
Statement:

...
Within
BaseCall
TSuperCall

§ A.5.2
Within:

within (Expression) Statement

§ A.5.3
BaseCall:

base . Identifier (Argumentsopt)
base (Argumentsopt)

§ A.5.4
TSuperCall:

tsuper . Identifier (Argumentsopt)
tsuper (Argumentsopt)

Contextual constraints:
(a) The expression of a Within must evaluate to an instance of a team class.

(b) The first form of a BaseCall may occur only in the body of a method that has the
callin modifier. The identifier must be the name of the enclosing method.

(c) The second form of a BaseCall may occur only in a constructor of a bound role class.

(d) The first form of a TSuperCall may occur only in a method of a role class.

(e) The second form of a TSuperCall may occur only in a constructor of a role class.

Types§ A.6.

§ A.6.1
Type:

...
LiftingType
AnchoredType

§ A.6.2
LiftingType:

Type as Type

§ A.6.3
AnchoredType:

Path.Type

§ A.6.4
Path:

Identifier
Path.Identifier

Contextual constraints:
(a) Location

A LiftingType may only occur in the parameter list of a method of a team class.

(b) Role in scope
The right hand side type in a LiftingType must be a class directly contained in the
enclosing team class (the class may be acquired by implicit inheritance (§ 1.3.1.(c))).

(c) Team path
Note, that the syntax of §A.6.3/4 is deprecated in favor of § A.9..
The path in an AnchoredType must refer to an instance of a team class. Each identifier
in the path must be declared with the final modifier.

74 TR 2007/03, TU-Berlin

Otjld v1.0 A.7. Guard predicates § A.7.

Guard predicates § A.7.B

§ A.7.1
Guard:

[base] when (Expression)

§ A.7.2
MethodDeclaration:

...
MethodHeader [Guard] MethodBody

Other rules referring to Guard: ClassDeclaration (§ A.1.), CallinBinding (§ A.3.)
Contextual constraints:
(a) The Expression in a guard must have type boolean.

Precedence declaration § A.8.B

§ A.8.1
PrecedenceDeclaration:

precedence CallinNameList ;

§ A.8.2
CallinNameList:

Name [, CallinNameList]

Value dependent types § A.9.B

§ A.9.1
TypeParameter:

TypeVariable [TypeBound]
ReferenceType Name

See JLS 3 §4.425

§ A.9.2
ActualTypeArgument:

ReferenceType
Wildcard
@Name

See JLS 3 §4.5.126

Contextual constraints:
(a) ActualTypeParameter

An ActualTypeArgument of the form @Name may only occur as a parameter of a simple
name type reference.

Packages and imports § A.10.B

§ A.10.1
PackageDeclaration:

...
team QualifiedName ;

§ A.10.2
Import:

...
import base QualifiedName ;

25http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#108850
26http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#107353

TR 2007/03, TU-Berlin 75

http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#108850
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#107353
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#108850
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#107353

	Introduction/Motivation
	About this Document
	Purpose(s) of this document
	Text structure
	Compiler messages
	Versions
	Publishing

	Teams and Roles
	Team classes
	Role classes and objects
	Modifiers for roles
	Externalized roles
	Protected roles
	Type tests and casts
	File structure

	Acquisition and implicit inheritance of role classes
	Acquisition and implicit inheritance of role classes
	Regular role inheritance

	Name clashes
	Team and role nesting

	Role Binding
	playedBy relation
	Binding interfaces
	Legal base classes

	Lowering
	Lifting
	Implicit role creation
	Declared lifting
	Smart lifting
	Binding ambiguities

	Explicit role creation
	Role creation via a lifting constructor
	Role creation via a regular constructor
	Role creation in the presence of smart lifting

	Abstract Roles
	Explicit base references
	Advanced structures

	Callout Binding
	Callout method binding
	Callout parameter mapping
	Lifting and lowering
	Overriding access restrictions
	Callout to field

	Callin Binding
	Callin method binding
	Callin modifiers (before, after, replace)
	Base calls
	Callin parameter mapping
	Lifting and lowering
	Overriding access restrictions
	Callin binding with static methods
	Callin precedence

	Team Activation
	Effect of team activation
	Global vs. thread local team activation
	Effect on garbage collection

	Explicit team activation
	Implicit team activation
	Guard predicates
	Regular guards
	Base guards
	Multiple guards

	Unanticipated team activation

	Object Teams API
	Reflection
	Other API Elements

	Role Encapsulation
	Opaque roles
	Confined roles

	Join Point Queries
	Join point queries
	Query expressions
	OT/J meta model

	Value Dependent Classes
	Defining classes with value parameters
	Using classes with value parameters
	Parameter substitution
	Type conformance

	Restrictions and limitations

	ObjectTeams/Java Syntax
	Keywords
	Scoped keywords
	Inheriting scoped keywords
	Internal names

	Class definitions
	Modifiers
	Method bindings
	Parameter mappings
	Statements
	Types
	Guard predicates
	Precedence declaration
	Value dependent types
	Packages and imports

