
Object Teams: Improving Modularity
for Crosscutting Collaborations

Stephan Herrmann

Technical University Berlin
stephan@cs.tu-berlin.de

Abstract. In this paper, we investigate whether module concepts for capturing
multi-object collaborations can be effectively used to implement crosscutting
concerns in reusable, independently developed modules for a-posteriori integra-
tion into existing systems. A new kind of collaboration module, called Object
Teams, is proposed which combines the best features of existing approaches, fur-
ther enhances them with concepts for expressing crosscutting relations between
independent collaborations, and facilitatesa-posteriori integrationof such col-
laborations into existing systems.

1 Introduction

Several proposals for modules that are larger than classes have emerged over the last
decade. In addition to components as defined by standard component models such as
the CORBA Component Model and Enterprise Java Beans, which are beyond the scope
of this paper, several other module proposals have been made for supporting so-called
collaboration–based design[4, 19, 16, 2, 17, 12, 3, 15].

Approaches of this kind build on the insight that the design of object-oriented appli-
cations can be organized in two dimensions: using structural abstractions (object types)
and collaborations in which these abstractions are involved (see Fig. 1).

Generally speaking, an object is involved in several collaborations, a single col-
laboration spanning several objects,
and each participating object play-
ing a particular role within the col-
laboration. While the definition of
an object is encapsulated within a
class, standard object-oriented lan-
guages do not provide an appropri-
ate module construct for capturing
collaborations. Approaches to imple-
mentation support for collaboration–
based design seek to fill this gap.

Collaboration 3 Role B3 Role C3

Collaboration 2 Role A2 Role C2

Collaboration 1

Class A

Role A1

Class B

Role B1

Class C

Role C1

Fig. 1.Dimensions of classes and collaborations

With collaborations spanning several classes, it is evident that collaboration mod-
ules arecrosscuttingwith respect to the basic modular structure of the system — the one
dictated by the structure of data. This observation has motivated us to investigate the
usefulness of techniques forcomposingmodules, which were proposed in the context of



aspect–oriented programming (AOP) [10]. Two concerns are considered crosscutting, if
given a modular structure for capturing one concern, the other cannot be encapsulated
in a module, but rather cuts across several modules as introduced by the first concern.
Our interest is in supporting independent development of reusable crosscutting concerns
that are subsequently integrated into an existing system. We argue that, while provid-
ing good starting points, none of the existing module constructs fully meets our needs.
Each of these proposals solves a different subset of problems on the road to reusable
collaboration modules. Since combining different language extensions is not normally
an option, we seek to develop an integrated programming language that, in a uniform
programming model, provides a powerful toolkit for a wide range of issues relating to
the definition and composition of collaboration modules.

Using an example scenario, we illustrate the features that are needed and propose a
new kind of collaboration module, calledObject Teams, which combines the best fea-
tures of existing approaches and further enhances them with concepts for expressing
crosscutting relations between independent collaborations and fora-posteriori integra-
tion of such collaborations into existing systems.

Object Teams can be related to more than a handful of recent approaches. Pre-
senting Object Teams as an improvement over any particular approach would therefore
mean randomly choosing a starting point for this presentation. To avoid expecting of the
reader detailed knowledge of one particular approach, we have chosen a neutral presen-
tation which introduces step by step the concepts that comprise the Object Teams model
(Sect. 2). Sect. 2.3 gives a preliminary comparison with approaches for collaboration
modules. Sect. 3 discusses related work from the field of AOP. Sect. 4 gives a summary,
looks at the current status of development and indicates areas for future work.

2 The Object Teams Model

Throughout this paper, we use a min-
imal model of a flight booking system. A
core model is assumed to exist contain-
ing the classesPassenger , Flight ,
and Segment . Segments are the con-
stituent parts of a flight. A passenger can
only book complete flights, though dif-
ferent flights may share common seg-
ments (cf. Fig. 2). Step by step, we intro-
duce into the model a bonus programme
by which passengers can collect credits
when booking flights. We restrict discus-
sion to the collection of credits, not cov-

class Passenger {
void book (Flight flight) { . . . }

}
class Flight {

Segment[] segments;
/* . . . methods omitted . . . */

}
class Segment {

void book (Passenger pass) { . . . };
int getMiles () { . . . };

}

Fig. 2.Features in the flight booking package

ering how collected credits are later spent. It is the unanticipated, non–invasive and
modular introduction of this bonus programme which we use to elaborate the concepts
of Object Teams. An overall picture of the intended system is sketched in Fig. 3, which
uses our UML extension UFA [8].



«adapt»

Subscriber

BonusSubscription

FBSubscr

«adapt»

subscribe(Subscriber, Bonus)

FlightBonus

FlightBonusVIP

segments*

FlightBooking

Flight

Passenger
...
book (Flight)
...

Segment

Subscriber=Passenger

UpgradableSubscr

Subscriber

Bonus

BonusItem

Fig. 3.Module structure overview of the intended system

2.1 Collaborations of confined objects

The key concept of Object Teams is a kind of module that combines properties of
classes and packages. AnObject Teamis an instantiable aggregation of confined objects
called roles. In our bonus exam-
ple, a Team comprises objects of the
classesSubscriber (persons par-
ticipating in the bonus programme)
and BonusItem (arbitrary items,
whose “acquisition” is rewarded by
a credit to the subscriber). A group
of objects is reified into a compound
object — calledTeam instance—
which represents the Team and con-
tains all participating roles.

Besides aggregating role objects,
a Team instance may also have fea-
tures of its own. In our example, we
use the Team instance to accumu-
late credits earned due to a bonus
item in the Team–level attribute
accumulator . At the same level,
the methodsput andtake encap-
sulate access to this attribute. Look-
ing at Fig. 4, lines 2–10 define
Team–level features. Lines 14 and
24 show access to the Team instance
as the outer instance of contained
roles. This is equivalent to Java’s
style of accessing an outer instance
from an instance of an inner class.

1 abstract team class Bonus {
2 int accumulator = 0;
3 void put (int credits) {
4 accumulator += credits;
5 }
6 int take () {
7 int tmp = accumulator;
8 accumulator = 0;
9 return tmp;

10· }
11 class Subscriber { // role class
12 int collectedCredits = 0;
13 void collect() {
14 collectedCredits += Bonus.this.take();
15 }
16 }
17 abstract class BonusItem { // role class
18 abstract int getRawCredit ();
19 int calculateCredit () {

20· // implement default policy:
21 return getRawCredit();
22 }
23 void earnCredit () {
24 Bonus.this.put(calculateCredit());
25 }
26 }
27 }

Fig. 4.Team definition for a bonus programme



Inheritance is introduced to our example by defining a hierarchy of TeamsBonus ,
FlightBonus andFlightBonusVIP . The definition from Fig. 4 is kept very gen-
eral. It contains no details of flight booking. When moving from this abstract Team to
the concrete TeamFlightBonus , the methodcalculateCredit may, for exam-
ple, be overridden to include some rounding operation according to the airline’s policy:1

team class FlightBonus extends Bonus {
// class Subscriber is reused without modification
class BonusItem { // implicitly inherits Bonus.BonusItem

int calculateCredit () {
int credit = tsuper .calculateCredit();
return ((credit + 999) / 1000) * 1000;

}
}

}
A Team specialization may refine any of the contained role classes. We do not add
special syntax for this, establishing the role inheritance simply by name equality. Such
implicit inheritance follows its own specific rules, which are not fully detailed in this
paper. A super call along implicit inheritance is denoted astsuper() , thus avoiding
ambiguity with respect to regular, explicit inheritance.

Another Team,FlightBonusVIP (of which no details are given here), could
also be defined to model an advanced bonus programme for specially qualified mem-
bers.FlightBonus andFlightBonusVIP can be modeled as specializations of
the more generalBonus Team with consistent refinement of all involved classes. Now
polymorphism applies to instances ofBonus , FlightBonus andFlightBonus -
VIP , but not to their contained role objects. Consistent refinement of role types, which
may refer to each other, may introduce covariance. By prohibiting substitution of roles
between different Teams types we ensure that these covariant redefinitions do not intro-
duce a hole in the type system.

Confined and externalized role objectsGenerally, a role instance is confined to its
enclosing Team, i.e., role objects cannot escape their enclosing scope, which is already
ensured by the type system of Object Teams. There is one exception to this rule: a vari-
able outside the Team definition may use an instance–bound type declaration as in

final Bonus bonusInstance = new FlightBonus(...);
bonusInstance.BonusItem item = bonusInstance.getCurrentItem();
...
bonusInstance.deleteItem(item);

Here the variableitem is declared to be of typeBonusItem and belonging to the
TeambonusInstance . This instance defines the Team and has its own understand-
ing of the typeBonusItem .

Only by declaringbonusInstance final, i.e., immutable, can it be statically en-
sured thatitem is only passed back to the same Team from which it originates. This is

1 The reader should not be confused by the still abstract methodgetRawCredit . Implemen-
tation for this method will be given — using a new mechanism — in Sect. 2.2.



the only way a role can be passed outside
the Team. The application code using
such an “externalized” role object must
be aware of Teams and declare variables
such that roles are only used together
with members of the same Team, or the
Team instance itself. Fig. 5 presents an
example in which this technique is used
to implement an action class that can
be used by a graphical user interface to
clear off the collected credits of a given
subscriber object that is currently dis-
played at the user interface.

class ClearAction extends Action {
final FlightBonus context;
context.Subscriber subscriber;
ClearAction(final FlightBonus c,

c.Subscriber s) {
context = c;
subscriber = s;

}
void actionPerformed () {

subscriber.clearCredits();
}

}

Fig. 5.Externalizing a role for use in the GUI

2.2 Role and base objects and their relation

After focusing on the consistency of objects within a Team, i.e., the graph formed by
their links, and on Team refinement, we will now present how a Team is composed
with an existing package of the application. This introduces a distinction of role and
base objects. Concerning their relationship two obligations have to be met. Firstly, we
must ensure that for each role a base object is always present. ABonusItem role
object cannot exist without a matchingSegment base object. Secondly, we take a new
view of substitutability between these two categories of objects. Should it be possible
to supply aBonusItem object where aSegment is required, or vice versa?

Dynamic composition To ensure flexible composition, we bind a Team to a base pack-
age using object–based inheritance (also known as delegation). The role–base relation-
ship is declared using the keywordplayedBy (cf. Fig. 6, line 9). We merge the classes
Segment andBonusItem using both types of inheritance: we create a subclass of
BonusItem — which owing to implicit inheritance does not require a new class name
— that is also arole of Segment by virtue of a role-base link between instances of
both classes. This link ensures dynamism because it can be established and removed at
runtime. Flexible multiplicity is also enabled because any number of roles may refer to
the same base object.

While object–based inheritance provides desirable flexibility, we have to be very
careful not to break the type system. What we want is a clean interface between a
role and its base object plus a fulfilment guarantee regarding this interface, i.e., we
must declare which methods a role will acquire from its base object, and we need the
guarantee that an instance providing this interface will actually be associated.

Declarative completeness and a-posteriori integrationThe straightforward approach
to declaring an interface between a role and its base is to use an explicit typed link.
Object Teams hide this link from client programs. Only theplayedBy clause gives
information on the relation between a role class and its base class (cf. Fig. 6, line 9). It
is the responsibility of the runtime system to ensure that each role object always has a
valid base object linked to it.



Both classes are further decoupled by making explicit theexpected interfaceof a
Team. We require all methods that are expected within a Team to be declared as abstract
methods. When refining an abstract Team, we provide two options for realizing an ab-
stract method: it may either be implemented in–place, i.e., by a regular method within
the refined role class, or by declarative mapping to an existing method of a base class.
The second option depends on aplayedBy declaration, which restricts the type of the
associated base object. Fig. 6 gives an
example of such a binding.

Lines 9–10 declare that calls to
getRawCredit should be delegated
to the base object of typeSegment us-
ing the methodgetMiles of the lat-
ter class. Such bindings are the key to
a-posteriori integration, because an ab-
stract Team can now be partially im-
plemented using its own ontology. By
refining the Team, the missing details
are filled in using the names of base
classes, which provide the required
functionality.

1 abstract team class Bonus {
2 class BonusItem {
3 abstract int getRawCredit ();
4 /* . . . other methods, which may */
5 /* usegetRawCredit . . . */
6 }
7 }
8 team class FlightBonus extends Bonus {
9 class BonusItem playedBy Segment {

10· getRawCredit→ getMiles;
11 /* . . . other details omitted . . . */
12 }
13 }

Fig. 6.A role binding

Mismatches, which can be bridged using these techniques, cover different inher-
itance structures (see [6] for a discussion in a similar setting), class names, method
names, and even parameter lists.

Note that in this model each method acquired by object–based inheritance must
be declared in a binding clause. This prevents accidental name clashes which would
otherwise be likely to occur because two classes that were developed independently are
combined. On the other hand, such explicit method acquisition is practical because of
the succinct style of binding declarations. In order to distinguish this kind of method
binding from another technique to be introduced in Sect. 2.4, we coin the notioncallout
binding, which is used to signify that a role object binds a method, which is not available
locally, by “calling out” to the associated base object.

Three levels of type safety can be identified. A Team can be type–checked stati-
cally in complete isolation. The refining Team that defines bindings to base classes can
be type–checked using the interfaces of both packages to be integrated — more pre-
cisely: the expected interface of the abstract Team and the provided interface of the
base package. The third level adds the dynamic dimension: it must be ensured that each
role object is, at all times, bound to a proper base object of the type declared after the
playedBy keyword. We elaborate on this in the following paragraphs.

Substitutability by implicit translation Objects of typesPassenger , Flight and
Segment along with other classes not mentioned here may also participate in other
Teams, like the planning and booking of travel packages. This should illustrate that
Teams operate on their own very specific, selective view of the world, with different
focuses on both the type and instance level. Research on programming views has taught
us to think of different views by means of mapping functions. We introduce a new kind



of substitutability by implicit translation. Our translations are defined according to [12]
and are calledlifting andlowering.

Lowering is already used when forwarding agetMiles method call (invoked as
getRawCredit ) from aBonusItem to itsSegment base object. Lowering simply
means stripping a role off its base. The method is then executed without knowledge
of the role. Note that this contrasts with normal object–based inheritance, where it is
crucial to maintain the original self–reference within delegated calls. We will address
the issue of overriding along role–base links in Sect. 2.4.

Lifting is required for example, whenever aSegment instance is to appear in a
FlightBonus Team. For this purpose, theSegment has to be wrapped or decorated
with aBonusItem role. It is important that the sameSegment is always represented
by the same role instance within a given Team. The translation using a cache of already
known role objects is under the implicit control of each Team instance.

Both translations are performed transparently by the runtime system. Subtype poly-
morphism and translation polymorphism can thus be exploited by the programmer in a
similar way. It is the runtime system that takes care of the difference. Substitutability of
role objects for an expected base object is not surprising. This is what polymorphism in
languages with object–based inheritance is all about. The reverse can only be achieved
by the lifting translation. We say a base object isfit for playing a given role if a corre-
spondingplayedBy relation is defined for the given role and base classes.

It is the lifting translation that the Object Teams runtime uses to ensure that roles
exist only with a valid base object. Once created, a role object may not alter the link
to its base object. Lowering, on the other hand, ensures that no role object escapes its
enclosing Team instance, except for explicitly externalized roles.

To summarize the role–base relationship: implicit lifting and lowering are the only
mechanisms that have access to the role–base link. Client code may never explicitly use
or modify this link. These mechanisms in concert ensure that each role always has a
consistent base object.

2.3 Comparing proposals for collaboration modules

The features presented so far roughly correspond to the capabilities of some approaches
for composition and refinement of collaborations. A comprehensive discussion can be
found in [15]. A comparison in terms of the major issues discussed so far is given in the
table below. Object Teams fulfil all listed criteria.

Object confinement is borrowed from the concept of family polymorphism [3], but
Object Teams provide the option of more flexibility. While both approaches confine
inner objects to the scope of their outer instance, different Teams maypartially share
objects by first lowering to a common part and then lifting to a different role. A member
of a family is “born” into its context for its entire lifetime. By contrast, Team member-
ship is a dynamic issue. Each role wraps an intrinsic object which is independent of any
Team.

Many previous proposals employing role objects suffer from the explicit schizophre-
nia between a role and its base object. Object identity is quite a dubious concept in such
a setting. For Object Teams, this is a non–issue because comparing a role and a base
object is meaningless: both exist in disjoint worlds.



mixin layers

dynamic view connectors

pluggable composite adapters

family polymorphism

delegation layers

reference [17] [6] [13] [3] [15]

collaboration refinement × × × × ×
declarative method binding – × – – –

confined objects – – – × ×
object–based inheritance – × × × ×

dynamic composition – × × × ×
multiple instance binding – × × – ×

lifting/lowering – × × – ×

In contrast to some notable similarities as shown in the above table, the features
presented in the following sections are not supported by any of the cited approaches.

2.4 Callin binding: weaving into existing code

Introducing implicit lowering for base calls made from a role object implies that we
apply a forwarding mechanism, not true delegation with late binding of self. This pre-
cludes overriding base methods within the role. While it is desirable to override a base
method within a role class, we consider overriding based on name equality inappro-
priate for the role–base relationship, because the independent development of role and
base modules might easily produce methods with the same names with no intention of
overriding. Instead, we maintain separation of name spaces and support explicit over-
riding as a special case of advice weaving in the style of aspect–oriented programming.

In order to emphasize the difference from the callout binding style introduced above,
the new style of binding is calledcallin and denoted by a reverse arrow←, because here
the bound role instructs a base class to “call into” the role. Both binding styles, callout
and callin, are to be seen from the perspective of a role object that somehow interacts
with an external base object.

To enable a role class to override base methods, we apply the style of the aspect–
oriented language AspectJ. We regard this kind of overriding as the insertion of new
code into existing classes. In the tradition of CLOS and AspectJ, we allow new code
to be inserted eitherbeforeor after the original method. Replacing the original version
is also possible (in AspectJ: “around”). In our example, anafter callin binding is
used to modify the methodbook of classSegment as shown in Fig. 7, line 3. As
the effect of this binding, each invocation ofbook from Segment entails a call to
earnCredit on an instance obtained from the current call target by lifting to class
BonusItem of TeamFlightBonus .

Only the replace style, which is the default if no keyword is given, has explicit con-
trol over executing the original version. Thinking of the role relation as an inheritance
relation, invoking the original version is equivalent to asupercall. We thus employ
a similar syntax, usingbaseinstead of super. All in all, Object Teams support three
different styles of inheritance: regular inheritance usingextends , implicit role in-
heritance (by name), and the role–base relationship. Unlike multiple inheritance, these



three mechanisms avoid ambiguities by precedence and explicit declaration of overrid-
ing. Each style has its own keyword for invoking a parent version:super , tsuper
andbase .

Because base calls are limited
to methods bound by a replace
callin, these methods have to be
marked “callin” before allowing the
use of a base call. Fig. 7 shows a
callin method (lines 6–9) and its
binding (line 10). This is a vari-
ant of the methodcollect from
Fig. 4, which could instead be
bound asafter callin with the
same effect.
While callout bindings do not affect
an application unless the Team is
explicitly invoked, callin bindings

1 team class FlightBonus extends Bonus {
2 class BonusItem playedBy Segment {
3 earnCredit← after book
4 }
5 class Subscriber playedBy Passenger {
6 callin void collect () {
7 base.collect(); // invoke original version
8 collectedCredits += Bonus.this.take();
9 }

10· collect← book; // overriding (replace)
11 }
12 }

Fig. 7.Binding Bonus to the flight booking system

offer the chance to insert triggers into the application, where Team–specific behavior
should be added. In our example, we were lucky that only two such triggers suffice for
weaving the Team into the base: each classPassenger andSegment has a single
method responsible for any booking action. If such a unique hook cannot be found,
quantification in the style of AOP can be used to denote as a join point a set of methods
into which a given advice is to be woven. It is beyond the scope of this paper to discuss
the expressiveness of declarations of join points, but preliminary comparisons suggest
that in Object Teams a much leaner sublanguage for join–point definition suffices as
compared to AspectJ, without sacrificing any of our goals.

2.5 Adjusting signatures

The last level of adaptation covered by Object Teams is parameter lists. If a-posteriori
integration is to be fully supported, it must be possible to bind methods that have dif-
ferent signatures. To this end our model allows the full signature with parameter names
to be included in the binding specification. Each method binding may then be followed
by a list of parameter mappings as in

void abstrMeth(T1 a1, T2 a2)→ void baseMeth1(T3 a3)
with { a2→ a3 };

void callinMeth(T4 a4)← void baseMeth2(T5 a5, T6 a6)
with { a4← a6 };

Note that both kinds of binding may ignore provided parameters (both times appearing
on the origin side of the arrow). In the case of a callin binding, the ignored parameters
are not discarded but only hidden by the binding. To illustrate this, consider an in-
vocation ofbaseMeth2(a5, a6) . This invocation will cause the overriding callin
methodcallinMeth(T4 a4) to be executed witha6 mapped toa4 . Within the
body ofcallinMeth , a call to the original versionbase.callinMeth(a4) will
automatically be translated back tobaseMeth2(a5, a4) , retrieving the hidden value
a5 from the binding context. Similar considerations hold for the return values of bound



methods. Parameter and result mappings may even contain simple calculations as in

int getCredit()→ int getMiles() with { result ← ((result + 999) / 1000) * 1000; }
Here, the keywordresult represents the function result and in order to illustrate the
direction of data flow, result values are mapped with an arrow which is reverse to the
method binding. In all these cases, the origin side of an arrow may be an expression,
while the target side must be a parameter name orresult .

2.6 Context selection

When binding collaborations with callout, behavior is defined in a conventionally mod-
ular style. Introducing callin weaving weblendbehavior from two different views. The
last concept to be introduced is concerned with selecting which Team definition should
take effect at which point during program execution.

As a default, we declare a Team to be ineffective with respect to its callin bindings
unless it is activated beforehand. Activation may take place explicitly or implicitly.

A Team may be activatedexplicitlyby invoking a special methodactivate() on
the Team instance. This turns on all callin bindings of this Team until a corresponding
deactivate() call is made. A shorthand for these two calls exists as a new block
construct:

in (myBonusInstance) do {
somePassenger.book(someFlight);

}
The effect is that, during the execution of this block, all callin bindings ofmyBonus-
Instance are effective. While it is obvious that the advice ofPassenger.book is
triggered, nested calls (at arbitrary nesting level) toSegment.book will also trigger
their callin bindings. Now the desired behavior is complete: first, methodcollect is
invoked that overridesbook from Passenger (cf. Fig. 7). The methodcollect
first passes control to its base method, i.e.,book . Within this invocation, an arbi-
trary number of segments may be booked and each segment invokesearnCredit
on itsBonusItem role (by anafter callin binding). MethodearnCredit (Fig. 4)
deposits the corresponding credits within an attributeaccumulator of the enclos-
ing Team instance. When the methodbook of classPassenger finishes, the callin
methodcollect will gain control again and transfer the credits from the Team in-
stance to the subscriber object. Note that this collaboration is partially controlled by
objects of typesPassenger andSegment , although neither class is modified for the
bonus programme.

Two other situations requireimplicit activation of a Team in order to maintain a con-
sistent system state. When calling a Team–level method, the Team is activated because,
within this method, role objects may be manipulated, which requires the context to be
active. By way of an example, consider a method

class FlightBonus {
void setPassenger(Passenger as Subscriber p) { /* ... */ }

}
Note how lifting is declared in this case: the parameter is required to be of typePassen -
ger , while within the method body the same object is to be seen as aSubscriber .



In a similar vein, an externalized role instance (cf. Sect. 2.1) may trigger context
activation. Invoking a method of a role while the context is not active must ensure
its activation as well. To illustrate this feature, let us continue the scenario of our ac-
tion class (Fig. 5). If a button is included in the graphical user interface, which has a
ClearAction associated, we have the following situation: while the interface is ex-
ternal to the Team and makes abundant use of and/or specializes classes from a library
like Swing, it also refers — via theClearAction instance — to an externalized role
of the FlightBonus Team. Since nothing can be said about when the button will
be pressed by the user, each timeperformAction calls to the externalized role, the
enclosing Team instancecontext must be activated in order to set up an appropriate
context for the execution of role methods.

As a result, callout calls can only occur while the corresponding Team is active.
Thus, if a method bound by callout is a template method whose hooks are overridden
using callin, the expected behavior where hooks call back to the Team is automatically
ensured. Experiments with LAC [7] have shown that a certain class of problems known
as the “jumping aspects” problem [1] can be avoided if re-entrance of a Team is ex-
plicitly disabled by temporarily deactivating the Team for a callout. Fine–tuned support
for activation and lifting is provided by the built-in classTeam, which is the implicit
super–class of all Teams.

Static weaving A Team which should always be active, i.e., permanently modify the
application, may be declared static. Staticness means first of all that no Team instances
can be created. All features of such a Team are static features. Secondly, and more
importantly, all callin code from a static Team is unconditionally woven into the ap-
plication. The Team in Fig. 8 adds aBonusPassenger role to eachPassenger
object and statically overridesbook (line 10). The callin methodentryHook checks
whether a context has been registered with this passenger. In the positive case, the orig-
inal version ofbook is called in the appropriate activation context (line 6), otherwise it
is called unmodified (line 8).

This Team finally makes obsolete the explicit activation on the previous page. Now
we have a completely operational and modular implementation of our bonus programme
without any modification to the base package and/or main program. Fig. 3 illustrates
how subscription can also be differentiated into an inheritance hierarchy.

2.7 Some remarks on method

Initial experience with the programming model of Object Teams suggests that activa-
tion of dynamic Teams can typically be realized by one static Team. This way, even
concern activation is a first–class concern that can easily be implemented within the
language. This approach is more flexible than a keyword–based approach as in As-
pectJ [9] (cf. the keywordsof eachJVM , of eachobject , etc.). At the same time,
it provides better support for reuse than mere design patterns, which cannot be imple-
mented in a reusable way. TheBonusSubscription Team can even be generalized
for attaching arbitrary contexts to arbitrary base objects. By simple and succinct bind-
ings of such a general Team definition, context activation can be woven into arbitrary
join–points by bindingentryHook .



1 static team class BonusSubscription {
2 class BonusPassenger playedBy Passenger {
3 Team myContext = null;
4 callin void entryHook () {
5 if (myContext != null)
6 in (myContext) do { base.entryHook(); } // invoke in context
7 else
8 base.entryHook(); // invoke unmodified
9 }

10· entryHook← book;
11 }
12 static void setActive (Passenger as BonusPassenger p, Team c)
13 { p.myContext = c; }
14 }

Fig. 8.A static entry trigger mechanism.

A predecessor of the current model, Aspectual Components [11], made a strict dis-
tinction between the definition of a collaboration and aconnectorthat binds it to the
application. Technically, this distinction is not needed, and in fact we have observed
situations in which partial Team definitions with partial bindings are helpful. Thus, we
allow the implementation of a Team to be mixed with binding details. It is, however, a
good style of programming with Object Teams to use one Team only for implementing
the collaboration and to define another module as a specialization of the Team, which
only acts as a connector, i.e., binds classes and methods between roles and base.

2.8 Summary of features

Object Teams provide high expressiveness for a wide range of design styles. Ideas and
findings from many different publications and language prototypes have influenced the
genesis of Object Teams. When combining positive properties from several program-
ming languages, care must be taken not to bloat the language with different concepts
that could easily outweigh the intended improvements. We consider Object Teams a
comparably lean model. In order to support this claim, we summarize the features of
Object Teams in two sections. First, we list those features that are visible to developers
using the language. Second, we focus on features that are implemented by the compiler
and runtime system.
From the concepts presented so far, only the following need to be learned by developers:

– Role objects are dependent objects that reside within an enclosing team instance
and also need a base instance.

– Callout bindings declare forwarding from a role instance to its base object.
– Callin bindings declare overriding by which a team definition may alter the behav-

ior of base classes.
– Team activation turns on and off all its callin bindings.



Other features can be deduced more or less directly by integrating these concepts with
standard object–oriented principles. Inheritance can be applied to team definitions, su-
per calls work in all dimensions of inheritance. Implementation for abstract methods
can be provided by either class–based inheritance or callout binding.
The following is taken care of by the compiler and runtime system:

– Base classes and team definitions can by statically type–checked in a modular way.
– Bindings are only allowed in a type–safe manner. This includes type–safe adjust-

ments of method signatures.
– Lifting/lowering translations are implicitly inserted when data flows enter/leave a

team.
– Teams are implicitly activated whenever a control flow enters a Team.

3 Related work

Object Teams aim at implementing collaboration based designs [16, 2, 19, 17]. They
have their roots in Adaptive Plug&Play Components [12], PCA [13], and Aspectual
Components [11]. They have been influenced by Hyper/J [18] with respect to the sepa-
ration of concern definition and concern composition as well as its capabilities for “on–
demand” restructuring. Influence from AspectJ [9] concerns the technique of weaving
into existing code. Virtual classes from gbeta and especially family polymorphism [3]
have shaped the type system of Object Teams. Delegation layers [15] have added a new
look on combining collaboration based design, family polymorphism, and delegation.

From this it should be clear, that Object Teams share properties with each of the
mentioned approaches. A comparison against other approaches to collaboration mod-
ules has been presented in 2.3. In this final discussion we will focus on differences to
other approaches from the field of aspect–oriented software development.

The sublanguage for specifying joint–points in AspectJ [9] is more sophisticated
(giving rise to criticism for language bloat) than ours. On the other hand Object Teams
provide better decoupling, modularization and flexibility. A Team without role binding
is completely unaware of any base package; yet, it is able to make use of base behavior
using abstract methods that are later on bound by callout. Capability of callout binding
is missing from AspectJ. AspectJ does not provide modules comparable to Teams. Also,
an AspectJ program has no control over instantiating and activating aspects at run–time.
Finally, AspectJ requires the source code of all classes to which aspects are woven.
Object Teams are implemented using byte–code weaving at load–time.

All concerns in Hyper/J [18] are equally independent, with no base–aspect distinc-
tion. Concerns are merged at compile time. In contrast, Teams are first–class entities,
which persist at run–time with the mentioned capability of (multiple) instantiation and
activation. Integration of Hyper/J concerns is specified by declarative composition rules.
An Object Team that is used as a connector uses callout and callin binding as well as
regular method implementation. Customized combination of the different versions that
are merged into one method can be achieved using super, tsuper and base calls.

Within the direct ancestry of proposals, Object Teams make the following advances:
Aspectual Components [11] misleadingly subsume callin and callout methods as “ex-
pected” methods, but distinguish collaborations and connectors. Object Teams make



explicit that the callin/callout distinction is imperative since very different rules hold for
both kinds of methods and bindings. In contrast, a collaboration/connector distinction is
just a matter of style, which may be blurred for some applications without loss of safety
or structure. Aspectual Components were not clear on dynamic issues regarding instan-
tiation and activation of collaborations and they lack the notions of lifting/lowering.

Adaptive Plug&Play Components [12], DVC [6] and PCA [13] all could be re-
garded as some kind of Object Teams without callin binding and Team activation. From
these, only DVC feature declarative bindings. PCA — notably in their implementation
by JADE [5] — support multiple “customizes” clauses, which correspond to implicit
inheritance in Object Teams. The explicit variant using “customizes” yields a prolifer-
ation of class names but allows to compose several collaborations in one step.

Finally, LAC [7] is the first published implementation of the Aspectual Components
model. LAC can be seen as the direct predecessor to Object Teams, but many details
of orthogonality between standard object–oriented concepts and Teams have only been
settled after the cited workshop paper.

4 Status of Development and Future Work

This paper investigated whether module concepts for capturing collaborations can be
effectively used to implement crosscutting concerns in reusable, independently devel-
oped modules that are a-posteriori integrated into existing systems. We proposed a new
kind of collaboration module, called Object Teams, which combines the best features of
existing approaches, further enhances them with concepts for expressing crosscutting
relations between independent collaborations, and facilitatesa-posteriori integrationof
such collaborations into existing systems.

A prototype implementation of a predecessor model of Object Teams, called LAC
[7], already exists. During the transition from the predecessor model as implemented in
LAC to Object Teams, the terminology and many concepts have been consolidated. Ob-
ject Teams improve the orthogonality of standard object–oriented techniques with the
few specific enhancements. This results in greater flexibility in terms of combining the
various mechanisms, and a smaller number of new features and keywords to be learned
by programmers. A compiler for Object Teams as an extension to Java is currently un-
der development and already shows the feasibility of most techniques. It is due to be
usable for real application before fall 2002 (cf. our web site [14]). Several case studies
for assessing the usefulness of Object Teams are already in progress. In this paper we
have only looked at the application to one specific domain. Application to other typical
problems has yielded encouraging results, but further research, including the develop-
ment of various supporting tools, is needed to make a final assessment regarding the
real–world usefulness of Object Teams.

Acknowledgements

The work presented here would not have been possible without the many contribu-
tions by Mira Mezini, including ideas put forward in [11] and many intensive discus-
sions on these issues. The following local colleagues and students contributed to Ob-
ject Teams by discussions and implementations: Jan Wloka, Christof Binder, Christine



Hundt, Matthias Veit, Florian Hacker, Carsten Pfeiffer, Marco Mosconi and Timmo
Gierke. Thank you all!

References

1. J. Brichau, W. De Meuter, and K. De Volder. Jumping aspects. position paper at the workshop
”Aspects and Dimensions of Concerns”, ECOOP 2000, June 2000.

2. D. D’Souza and A. Wills.Objects, Components, and Frameworks with UML – The Catalysis
Approach. Addison-Wesly, 1998.

3. E. Ernst. Family polymorphism. InProc. of ECOOP’01, number 2072 in LNCS, pages
303–326. Springer Verlag, 2001.

4. W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure objects. In
Proc. of OOPSLA’93, pages 411–428. ACM, 1993.

5. M. Haupt. JADE: Entwurf und Implementierung eines Sprachkonstruktes zur
dynamischen Komposition wiederverwendbarer Softwaremodule als Erweiterung der
Programmiersprache Java. Diploma thesis, Universität-Gesamthochschule Siegen,
www.st.informatik.tu-darmstadt.de/projects/JADE/ , December 2000.

6. S. Herrmann and M. Mezini. PIROL: A case study for multidimensional separation of con-
cerns in software engineering environments. InProc. of OOPSLA 2000. ACM, 2000.

7. S. Herrmann and M. Mezini. Combining composition styles in the evolvable language LAC.
In Proc. of ASoC workshop at the 23nd ICSE, 2001.

8. Stephan Herrmann. Composable designs with UFA. InWorkshop on Aspect-Oriented Mod-
eling with UML at1st Intl. Conference on Aspect Oriented Software Development, 2002.

9. G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and J. Palm. An overview of AspectJ. In
Proc. of 15th ECOOP, number 2072 in LNCS, pages 327–353. Springer–Verlag, 2001.

10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.
Aspect Oriented Programming. InProceedings of ECOOP ‘97, number 1241 in LNCS,
pages 220–243, 1997.

11. K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual components. In
Technical Report, Northeastern University, Apr. 1999.

12. M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for evolutionary software
development. InProc. OOPSLA’98, volume 33 ofSIGPLAN Notices, pages 97–116. ACM,
1998.

13. M. Mezini, L. Seiter, and K. Lieberherr.Software Architecture and Component Technology:
State of the Art in Research and Practice, chapter Component Integration with Pluggable
Composite Adapters. In M. Aksit (ed.)Software Architecture and Component Technology:
State of the Art in Research and Practice. Kluwer Academic Publishers, 2001.

14. Object Teams home page.http://www.ObjectTeams.org .
15. K. Ostermann. Dynamically composable collaborations with delegation layers. InProc. of

ECOOP 2002, LNCS. Springer Verlag, 2002.
16. T. Reenskaug.Working with Objects – The OORAM Software Engineering Method. Prentice

Hall, 1996.
17. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. InProc. of

ECOOP’98, number 1445 in LNCS, pages 550–570. Springer Verlag, 1998.
18. P. Tarr and H. Ossher.Hyper/J User and Installation Manual,

http://www.research.ibm.com/hyperspace . IBM Corporation, 2000.
19. M. VanHilst and D. Notkin. Using role components to implement collaboration-based de-

sign. InProc. of OOPSLA’96, volume 28(10) ofACM SIGPLAN Notices, 1996.


