Are Pointcuts a First-Class Language Feature?

Stephan Herrmann*
Technische Universitat Berlin

stephan@cs.tu-berlin.de

ABSTRACT

This paper challenges the notion “pointcut” and its role
in defining the essence of aspect-oriented programming lan-
guages. We present a conceptual experiment of explaining
AOP without using the notion “pointcut” demonstrating a
large subset of AOP for which simpler and better-explored
notions suffice. By the remaining delta to existing aspect
languages we narrow down for which precise concept the in-
troduction of a new notion is useful. We discuss why that
concept is indeed fundamental and present a model of our
understanding of pointcuts as first-class program elements.
One of the key properties of the proposed model is its im-
proved type safe compositionality.

1. DOWEKNOWWHAT POINTCUTS ARE?

At the conceptual level the most quoted definition of As-
pect Oriented Programming (AOP) uses the terms “quan-
tification” and “obliviousness” to describe the relationship
between an aspect and the base program it adapts [9]. This
definition serves as an umbrella for a number of program-
ming languages which realize the promises of AOP in quite
different ways. The definition does not preclude which lan-
guage features a programming language must exhibit in or-
der to be called aspect oriented.

Mainstream AOP languages de-facto agree on a notion that
has been coined in the context of Aspect]: pointcut.' Def-
initions of this notion mainly focus on the intentional level
by saying pointcuts are a means for capturing sets of points
in the execution flow of a program. But what actually are
pointcuts? Can a language without a concept of pointcuts
still be considered an AOP language? If we need pointcuts,
what would be the most appropriate theory and calculus
behind them?

These are the kind of questions that this paper approaches.
The questions have been discussed in depth in the team
developing the programming language ObjectTeams/Java
(OT/J)[18] and its tools [19]. Our goals were to analyze
existing pointcut languages in order to determine the key
features that, according to the state of the art, a pointcut
language must support. After such analysis the best-of-the-

*This work has been supported by the German Federal Min-
istry for Education and Research under the grant 01ISC04A
(Project TOPPrax).

! Throughout this paper we will typeset pointcut referring to
the AspectJ notion, while we propose a related but restricted
notion: POINTCUT.

breed sub-language was to be integrated into OT/J in order
to complete the design of this language.

Much to our surprise the longer this discussion lasted, the
less we knew what should be considered the commonly agreed-
upon state of the art with respect to pointcuts. At the be-
ginning of this discussion we tried really hard to even avoid
the notion of pointcuts (for lack of a precise understanding)
and tried to define all essentials of AOP using the notion
“join point” as the only fundamental concept regarding the
desired “quantification”. While this experiment of defining
AOP without “pointcuts” was quite successful to a certain
degree, eventually it became more and more clear to us,
what actually could be the role of the notion “PoiNTCUT”
in the foundation of AOP.

Our investigation results in two seemingly opposite sugges-
tions:

1. A large subset of aspect oriented programming can be
described completely without the notion of pointcuts.

2. For pointcuts to be an integral part of a programming
language it is probably a good idea to make pointcuts
first-class elements of programming.

While discussing the issues at hand we pursued the funda-
mental goal of defining the notion of POINTCUTS together
with a calculus for composing complex structures from el-
ements. Such a calculus should provide composition oper-
ators for POINTCUTS that are type-safe in a stricter sense
than what is realized in current AOP languages. By this we
mean, that any POINTCUT specification that passes the type
checker should have a sound interpretation. Some counter-
examples will be given in Section 6.

We would like to point out that this paper does not try
to define a formal semantics for AOP but it separates ex-
isting AOP mechanisms into simpler mechanisms which are
already well-understood. The focus lies on reducing the con-
cept of “pointcuts” to simpler concepts, or concepts already
existing in standard object-oriented languages. This reduc-
tion, we hope, will improve formal and informal understand-
ing of existing and future AOP languages.

Throughout the discussion we will relate individual concepts
to previous publications on the given topic. An overall com-
parison to related work, however, is postponed towards the
end of this paper.

2. FOUR STEPS TOWARDSPoinTcuTs

This section describes a set of fundamental concepts and
mechanism which may be used to approximate AOP with-
out using the notion “pointcut”. This discussion serves two
purposes: First, we are looking for an improved understand-
ing of the elementary concepts behind AOP. In our under-
standing the concept “pointcut” is too ambitious for this
purpose, its interpretations are so broad that this concept
can hardly be considered elementary. Second, by attempt-
ing to define AOP without pointcuts we will isolate a specific
concept that cannot be captured with the conceptual tools
used up-to that point (Sect. 3). Section 4 will give an in-
terpretation that motivates why we consider that isolated
concept to be indeed fundamental. At that point we will
agree to use the notion “POINTCUT” and give a model of
how this concept can be folded back into object-oriented
programming (Sect. 5).

2.1 Method Call Interception

At the outset of our discussion we adopted the definition
by Ralf Ldmmel who claimed the fundamentally new con-
cept in AOP to be method call interception (MCI) [16]. His
paper demonstrates how the dynamic semantics of an AOP
language can be defined by adding nothing but MCI to a
given imperative object-oriented programming language.

Examples

Each AOP language features some mechanism for binding
advice/aspect methods to join points. The mechanism of
all these aspect bindings can be interpreted as MCI. Xu et
al [22] suggest a similar reduction of AOP to an existing
dispatch mechanism. They chose implicit invocation as a
foundation, which may be taken as a hint that the dispatch-
ing can be controlled by an entity that’s neither part of the
base nor of the aspect proper, but some kind of mediator.

Throughout this paper we will present small code examples
in the syntax of ObjectTeams/Java (OT/J) [14], so Figure 1
shows an example of declaring MCI in OT/J, here an after
callin binding, saying that aspectMethod should be invoked
after each execution of baseMethod.

Interpretation

Technically MCI is closer to reflection based mechanisms
whereas AOP is usually explained in terms of code weaving.
Since semantically both mechanisms are equivalent either
model is suitable for defining the semantics of AOP. In fact,
we believe that MCI is also an appropriate model for teach-
ing AOP, maybe more so than weaving, because MCI allows
for an intuition of what the actual source code will produce,
whereas weaving requires the indirection of explaining an-
other (transformed) version of the program that nobody will
ever see. Along the same lines Lammel argues that MCI
can be realized by either program transformation or (be-
havioral) reflection ([16]). However, for a change of attitude
Lammel envisions that MCI will be considered fundamen-
tal just like dynamic binding (which can also be realized

void aspectMethod () <— after void baseMethod();

Figure 1: Method call interception in OT/J

by program transformation or reflection). Once MCI will
have been granted a similar standing as dynamic binding,
aspect-oriented thinking will be much more natural than un-
derstanding programs only by the transformation of weav-
ing.

Aside from weaving and reflection a third model has been
proposed: event based communication (see, e.g., [7, 22]). In
this paper we will frequently speak of events during the ex-
ecution of a program because we feel that this well supports
the intuition of MCI. However, for the context of AOP we
consider weaving, reflection and event based communication
pretty much as different (interchangeable) views of the same
ideas.

In fact, MCI fully realizes the concept of “obliviousness” in
that sense, that a base program can be developed in igno-
rance towards any aspects. Any control flows from the base
code into the aspect code are defined by the aspect only.

Desirable capabilities

When binding methods of the base program to aspect meth-

ods data flows need special attention, because neither method
may be designed explicitly for this binding, so signatures

may exhibit arbitrary mismatches.

For this purpose, OT/J supports so called parameter map-
pings, by which parameters can be re-mapped between base
and aspect methods. For before and after bindings such
mappings are one-way, but in replace bindings parameter
mappings must be reversible in order to map a base-call
(comparable to proceed), which uses the signature of the
aspect method, back to the actual base method.

Parameter mappings are comparable to AspectJ’s concept
of context exposure. For the discussion at hand method sig-
natures only play a minor role.

2.2 Join Points

The most obvious restriction in the AOP-as-MCI view re-
gards the operations that can actually be intercepted. Clearly,
the focus on method calls does not suffice for most aspect
languages. This is where we need to introduce the next
fundamental notion: the notion of “join points” as points in
(the static structure of) the program.? With this new notion
we should generalize the interception mechanism to cover all
kinds of join points, thus speaking of join point interception
(JPI).

Join points are elements within a program that can be re-
ferred to either by name or by more complex specifications.
Technically speaking, those program elements correspond to
nodes in the abstract syntax tree (AST) of a program. Rea-
soning about AST nodes from within the program means to
support a specific kind of structural reflection (as opposed
to the behavioral reflection that can realize JPI).

2We’d like to mention that the word “point” in this discus-
sion should not be interpreted in its strict mathematic way,
which would imply a concept with no extension and no other
properties other than its location in space. Join points def-
initely have both an extension (so before and after a point
are indeed distinguishable) and some relevant properties (so
it is relevant to replace a point by something else).

At a closer look the actual reflexive representation of a pro-
gram opens at least two new degrees of freedom:

1. What should be the actual granularity of this program
representation?

2. Should the representation be the plain AST or should
a resolved graph representation (ASG) be chosen?

Question 2 will be discussed in the next section. Motiva-
tion for discussing the granularity (1) can, e.g., be drawn
from the evolution of AOP in general as well as of the lan-
guage AspectJ. In the beginning one might have uniformly
thought of join points as relating directly to method calls
where method bodies would largely be seen as black boxes.
Meanwhile even statement level join points are being dis-
cussed®. More specifically, AspectJ started with a quite lim-
ited number of kinds of join points. In 2000, e.g., AspectJ
featured these join points: calls, receptions* and executions
of methods and constructors, setting and getting a field as
well as execution of exception handlers. The current version
of the Aspect] programming guide® mentions 11 kinds of
join points. Research still suggests new kinds of join points
as, e.g., in [13]. It is difficult to see, at what point this
evolution will terminate.

From analyzing what types of nodes are used to express Java
programs in source code and in byte code we can identify
between 17 and 20 kinds of join points which are suitable for
aspect binding. Here are two examples of join point kinds
that are not standard in today’s aspect languages, which
could indeed by useful in real world programming;:

e A cast join point could, e.g., be used to implement
things like custom conversions in C# [1]. This join
point kind has also been suggested in [4].

W@

e A dereference join point could intercept the “.” op-
erator by which the receiver of a method call or field
access is evaluated/dereferenced. This kind of join
points could very well support different styles of prox-
ies and/or caching in a most elegant style. We are not
aware of previous publications about dereference join
points.

Note, that both these join point kinds are even sub-statement
granularity: they capture individual expressions or opera-
tors. As a counter-example, all kinds of branching or jump
instructions are not suitable for interception.

We have reasons to believe that within the given range a
complete set of join point kinds can be determined.

3Statement level join points would, e.g., be useful for instru-
menting programs for the purpose of measuring test cover-
age (cf. [21].

4receptions have later disappeared from the language
5Unfortunately, the language documentation makes no men-
tioning of the language version it defines, so quoting “the
current version of AspectJ” simply means Aspect] as de-
fined by the “Programming Guide” as I downloaded it today
from [3].

memberAccess
fieldAccess value methodCall
set get functionCall

Figure 2: A multi-hierarchy for join point kinds.

Once the set of node types in this representation is defined it
is also crucial to define a good taxonomy providing abstrac-
tions over related types of nodes. While such taxonomy is
common place in compiler implementations, we suggest to
extend existing taxonomies towards multi-hierarchies in or-
der to allow abstractions following different criteria.

Using a multi-hierarchy the following abstractions could co-
exist in the same model (see Figure 2): A ‘field access event’
abstracts over read and write access to a given field or a
set of fields. A ‘value producing event’ abstracts, e.g., over
reading a field and calling a function.® The following table
illustrates matching for this example using the fictitious join
point kinds fieldAccess and value:

‘ fieldAccess(f) ‘ value(T)

this.f = new T(); match —
return this.f; match match
return this.getF(); — match

2.3 Join Point Queries

Join point interception as described in the previous sections
can be regarded as supporting the desired “obliviousness”
property of AOP. The next step towards aspect-oriented
happiness 7 requires to add a concept for “quantification”.
The question is, given the above definition of join points,
how do we obtain the desired sets of join points, ie., how is
quantification actually specified? In this question we agree
with Eichberg et al [8], who suggest to define sets of join
points using functional queries. Given a graph representa-
tion of the program any query language capable of travers-
ing graphs should be suitable. From the analysis of existing
pointcut languages, the following three elements seem to be
a good foundation for a query language for join points:

1. A scope defines where to search by selecting a set of
elements to search within.

2. A kind defines which type of nodes is searched.

3. An optional constraint may further restrict the set of
nodes found so far. A constraint is a predicate over a
potential join point (just like the where clause in many
query languages).

SNote that the latter abstraction is a built-in feature of the
language Eiffel. Meyer calls this the principle of uniform
access[17]. In languages that do not realize this principle in
their syntax, a multi-hierarchy may still establish the desired
abstraction a-posteriori.

TCf. [17).

In contrast to the predominant use of AST's, a resolved ASG
(question 2 in the previous section) allows to define join
point sets not only over containment relationships but over
any associations in the language’s meta model. Several au-
thors feel inclined to consider the call graph as the spanning
structure for computing sets of join points.® Clearly call
graphs require the abstract syntax structure to be resolved.
A second use of resolved information is in constraints that
may be applied as filters to a previously defined set of join
points. Many useful constraints require references in the
AST to be resolved.

Examples

The static part of AspectJ’s pointcut language is an example
for a join point query language, although AspectJ is better
explained by a the concept of matching join points rather
than querying. Logic meta programming [12, 20] allows to
define sets of join points by prolog predicates over the re-
flexive program representation. In [8] the (functional) query
language XQuery is used basically for the same purpose.

Interpretation

It is clear that the definition of sets of join points requires
capabilities that go beyond explicit enumeration. Match-
ing as supported by AspectJ yields a more concise notation
whereas systematic query languages (be they logic or func-
tional in nature) are better suited as a foundation of AOP.
Clearly, a good query language contains as a subset the ex-
pressiveness of pattern matching.

As long as query languages are applied only statically, ie., at
compile time, this model is also practical because the effort
for evaluating static queries should be more or less in the
same order of magnitude as the compilation proper. The
performance of the final program is obviously not effected
by the choice of query language.

2.4 Event Filtering

The sets of join points defined by queries as discussed in
the previous section can be interpreted as triggers to which
aspects can be bound using the mechanism of join point
interception (JPI). Given this framework for quantification
(join point queries) and obliviousness (join point intercep-
tion) several researchers have felt the desire for dynamically
filtering the set of join point invocations in order to apply
JPI only under given conditions which have to be evaluated
at run-time.

Please don’t confuse these dynamic filters with the con-
straints that may contribute to the queries defined above.
Constraints as part of a join point query reason about static
program properties, whereas event filtering is based on run-
time values.

Examples

Obviously the Composition Filters [5] approach is based cen-
trally on the idea of filtering event flows. Also Aspect]’s if
pointcut provides a basic means for the same purpose. A
more modular mechanism for dynamically enabling a set of

8E.g., the pcflow pseudo-pointcut requires a call graph anal-
ysis (see [8] for an initial discussion on this topic).

void aspectMethod () <— after void baseMethod ()
when (condition);

Figure 3: Method binding guard in OT/J

aspect bindings is defined by aspect activation (sometimes
referred to as dynamic aspect deployment). Aspect activa-
tion may affect an aspect class or an instance, it may be
controlled implicitly or explicitly, as a block construct or in
a purely imperative style, and it may affect different scopes
of a running system. ObjectTeams/Java supports a variety
of means for controlling aspect activation (see Paragraph 5
in [14]).

The most explicit and versatile way of event filtering at run-
time is given by OT/J’s guard predicates [15]. Figure 3
shows the binding of an aspect method in OT/J which is
guarded by a predicate (keyword when).

Interpretation

Since JPI introduces control flows which are invisible in the
program, the question arises where these control flows them-
selves could be controlled if they should happen only con-
ditionally. A method invocation that is not explicit in the
program cannot easily be guarded by a condition. Instead
of forcing the programmer to implement such conditionals
within the imperative aspect code, the afore mentioned ap-
proaches provide means to express conditionals at locations
closely connected to the JPI mechanism. Yet, the guard
concept in OT/J [15] is more powerful than the others as it
may control aspect activation and instantiation and it may
do so at four different levels of granularity, thus enhancing
modularity of the activation aspect of aspects.

We favor the idea of describing JPI in terms of events. In
this understanding conditional JPI means to provide mech-
anisms for filtering call events at run-time. Strictly speak-
ing, event filtering is not necessary for explaining AOP. As
mentioned before, any event filter could be hand-coded into
the respective aspect methods. However, guards as featured
by OT/J are a fairly lightweight language feature which in
return provide significant improvements in modularity and
readability. No new theory is needed to embed guards into
the foundation of AOP, since the triple join point, filter,
aspect method actually realizes the well-explored paradigm
of event-condition-action systems like, e.g., statecharts (see
the discussion in [15]).

Desirable capabilities

For languages supporting aspect instances it is desirable to
select whether filtering should occur before or after lookup
of an aspect instance.® For complex aspects modularity can
be enhanced if filters can be applied to program elements
at different levels of granularity. OT/J supports to attach
a guard predicate to (a) a method binding, (b) an aspect
method, (c) an aspect class (“role”) and (d) a compound
module of aspect classes (“team”).

9This distinction not only determines the set of values avail-
able for the guard, but allows to selectively suppress on-
demand instantiation of an aspect.

3. WHAT IS MISSING?

The four concepts join points, join point interception, join
point queries and event filtering allow us to explain almost
everything that can be expressed in today’s AOP languages.
Note that so far we saw no need to introduce the notion
“pointcut” for our explanations. Of course the Aspect]
view of our discussion would have used the notion “point-
cut” throughout. We have two reasons for being reluctant
towards this notion: (1) In all cases where “pointcut” is only
a synonym for “set of join points” a new notion is simply
not needed. (2) If we introduce a new notion we would like
to see a precise definition first.

Having come so far without saying “pointcut”, what is the
actual delta between AOP languages with and without a

“pointcut” concept? We will agree to use the notion “POINTCUT”

if a concept of AOP can be found that cannot be expressed
by the above notions. This agreement pre-assumes that the
yet-to-be-defined concept will actually turn out to be a co-
hesive concept with well-defined properties. Looking at As-
pectJ we see exactly one construct that cannot be described
in the afore mentioned set of concepts: cflow. Other, newer
concepts come to mind, too: stateful aspects [6] and trace-
matches [2].

3.1 Classifying dynamic aspect binding
Before focussing on the above three concepts, let’s first check
whether this list is actually complete. Stateful aspects and
tracematches should be seen as representatives for a group
of related approaches. Looking at AspectJ we find six kinds
of pointcuts that describe some kind of dynamism: cflow,
cflowbelow, if, this, target and args. The if construct
has already been discussed as directly supporting what we
call event filtering. An analysis of this, target and args is
blurred by the fact, that each of these constructs realizes two
quite unrelated concepts: context exposure'® and matching
according to the dynamic type of certain run-time values.
For simplification we suggest that the matching part of these
pointcuts be rephrased using an appropriate if pointcut (in
this sense target(T o) is equivalent to if (o instanceof
T)). Thus this, target and args do not introduce a new
concept that has not already been covered by concepts in
the previous section.

Indeed the cflow construct (and of course cflowbelow) re-
mains as the only AspectJ pointcut that cannot be expressed
simply in those terms defined in the previous section.

3.2 Commonality of advanced concepts
Let’s compare the three mechanisms not yet covered by our
set of concepts: cflow, stateful aspects and tracematches.
We find one striking similarity: All these mechanisms rea-
son about more than one event (instance). Usually sev-
eral events are considered which are generated by differ-
ent join points. These events occur at different points in
time. Whether or not the execution of aspect code is fired
by a given event depends on other events occurring at other
points in time.

0Context exposure is not a major focus of this paper. This
topic has been touched briefly as “parameter mapping” in
section 2.1.

Care should be taken not to confuse static quantification
with the dynamic, temporal multi-event property of POINT-
cuTs. For each join point in a static set (as defined by a
static join point query) always one event suffices to trigger
the aspect code. The same even holds for the (dynamic)
event filters discussed in Sect. 2.4: one trigger is enough.
Thus we see three levels of dynamism:

1. No dynamism in static queries (quantification).
2. Run-time snapshots for evaluating filters (guards).

3. Multi-trigger POINTCUTS whose evaluation evolves over
time.

We use the word “POINTCUT” exclusively in situations where
multiple event instances decide about triggering or not trig-
gering some given aspect code. We decide to do so because
this understanding of “POINTCUT” cannot be reduced to
simpler fundamental concepts. At a first sight one might be
tempted to select one of the given approaches as the founda-
tion trying to define the others in the terms of the selected
approach. We have two reasons for not doing so:

1. The stateful aspects and tracematches approaches,
though being closely related in spirit, bear one incom-
patibility which forbids direct translation from one no-
tation to the other: the semantics of the automata im-
plicitly underlying both approaches differ in (at least)
one decisive point: Each transition of a stateful aspect
may actually trigger advice. By this tool all states
of the automaton are potentially observable and it is
ensured that the automaton at each point in time has
exactly one state. By contrast, a tracematch may trig-
ger only one advice after the whole pattern has been
detected. Before that point the state of the automa-
ton is not observable, even ‘worse’: it may be in several
states potentially simultaneously when matching over-
lapping sequences.

Thus we see no way to declare one approach as funda-
mental and map all other approaches to it.

2. Although common properties of existing multi-trigger
PoINTCUTS can be identified, we could imagine other
approaches appearing in the future, which also con-
sume several triggers into one POINTCUT but with dif-
ferent semantics of this combination.'*

4. POINTCUTS AREREVERSE METHODS

Do the above considerations provide good reasons for intro-
ducing a new concept into the theory of programming lan-
guages? After we narrowed down the concept to be defined
to those situations that require to consider several run-time
events, we actually do not see any existing concept (outside
the field of AOP) that could easily serve for explaining what
we want to explain.

However, we can pin-point a well-established concept that
actually performs the reverse operation of what POINTCUTS
shall do: methods! We could actually think of POINTCUTS

1A wide field for such innovation would perhaps be given
when detecting patterns of concurrent behavior!

Mmethod

<c|kent ‘n,() /”Q()

A n2()

\ ()
\ n8()

mx()

consume one incoming call event
produce sequence of outgoing events

; event flow
produce one outgoing call event T .
consume sequence of incoming events source sink

Pointecut

<advi ce>

PC
trig2()
trig3()

trigx()

Figure 4: Interpreting a Pointcut as a reverse method.

as reverse methods. If we can demonstrate such an anti-
symmetry between methods and POINTCUTS we consider
this as sufficient motivation for the concept of “PoINTCUTS”,
because if such a thing as a “reverse method” exists, it is cer-
tainly (a) a fundamental concept (b) not directly supported
by traditional languages.

What would it mean to define POINTCUTS as reverse meth-
ods? Looking at the intention behind both of them we
could define methods as program elements responsible for
producing the behavior of the program. Instead of produc-
ing behavior, POINTCUTS are intended for detecting actually
performed behavior. A more precise definition of this anti-
symmetry looks at the fan-in and fan-out of run-time control
flows:

A method is always invoked by ezactly one caller, i.e., any
method invocation consumes exactly one call event. Con-
versely, a POINTCUT may consume any number of call events
before actually doing anything.

After consuming its input events, the POINTCUT may even-
tually produce exactly one output event. Advice may be
bound to this event in order to perform aspect behavior.
The purpose of methods, on the other hand, lies in their ca-
pability to call any number of (other) methods, which should
be interpreted as producing a number of output events.

Furthermore, a method knows those servers to which it sends
method call events, ie., the method knows about connected
event sinks. The method is however ignorant towards its
(potential) clients — the event sources connected. By con-
trast, a PoINTCUT knows about connected event sources
only (the elementary events being observed) and is ignorant
towards the sink which will eventually consume its output
event. Figure 4 illustrates this anti-symmetry.

These observations are well in line with previous work in
which POINTCUTS have been described, e.g., as monitors[7].

5. POINTCUTSASFIRST-CLASSENTITIES

After we have recognized “POINTCUTS” as being a funda-
mental new concept, we now look for a model that may
provide a conceptual realization of what we have described
as “reverse methods”. Rather than defining this model from
scratch we use existing constructs for this conceptual real-
ization.

As a suitable model for POINTCUTS we propose a special use
of classes. Such a class contains one method for each input
event. The input events are connected to these methods by
join point interception, which can be established as a static
connection. These input methods may perform arbitrary
local action. The methods may read any system state that is
visible to them but they should usually update only internal
state of the POINTCUT.

In addition to these input methods a POINTCUT has one
special method called fire. This method is always empty.
Based on the local state of a POINTCUT any of the input
methods may call fire in order to signal the complete de-
tection of the behavior specified by this POINTCUT. As an
alternative the method fire may be directly bound to a
given input event but guarded by a filter that will enable
the firing only in a specific state of the POINTCUT.

Aspect code may be connected to this fire event by another
level of method call interception.

Examples

In addition to the examples from existing approaches (cflow,
stateful aspects and tracematches), one could easily think
of a number of specific patterns that could be captured as
PoinTcuT classes within a PoINTCUT library.

The simplest example we could think of is a once POINTCUT,
which for the execution of a system fires only once (useful
for all kinds of initializations). Here the POINTCUT simply
maintains a flag whether it has already fired.

1| // emulates cflow(call (B1.m1())) && call(B2.m2())
2| class MyCFlow extends Pointcut

3

4 // dispatch logic:

5 boolean enabled = false;

6 callin void triggerl () {

7 boolean oldVal = enabled;

8 enabled = true;

9 base.triggerl (); // the base-call
10 enabled = oldVal;

1 }

13 // connecting incoming triggers:

14 triggerl <— replace Bl.ml;

15 fire <— replace B2.m2

16 when (enabled);

7| }

19| // binding the above pointcut to an aspect method
20| class MyRole

2| {

2 void roleMethod () { ... }

24 // aspect binding using a callin binding:

25 roleMethod <— before MyCFlow. fire ;
26| }

Figure 5: Emulating cflow using a Pointcut class

Figure 5 gives a sketch of how cflow can indeed be imple-
mented using a POINTCUT class. Lines 5-11 implement the
required dispatch code. Only while executing the first base
method via the base-call in line 9, the flag enabled is set
to true. Line 14 binds this piece of infrastructure to the
first base method, here B1.m1. The binding in line 15 is
guarded by the predicate (enabled). Line 25 finally binds
the POINTCUT to the aspect method roleMethod.

If arguments of the first method call should be preserved for
exposure to the aspect method (the ‘wormhole effect’), no
explicit stack is needed because the call stack will keep a
copy of these values within the stack frame of each invoca-
tion of triggerl.

Syntax

Please note, that the model presented here is meant to be a
conceptual foundation. A language implementation may or
may not use this model directly. In the conclusion of this
paper we briefly mention two development tasks needed to
yield a productive programming language: (1) Supporting
specialized syntax for standard POINTCUTS like cflow. (2)
Optimizing translation of standard POINTCUTS into efficient
code. While this might appear as an unnecessary detour as
compared to existing aspect languages, we are convinced
that a language supporting generalized concepts can much
easier incorporate specialized support for specific constructs
than vice versa. Thus the model of POINTCUTS as classes
should be considered as the point of reference by which a
universal, extensible language design is made possible.

It is beyond the scope of this paper to systematically discuss
the question of instances of POINTCUT classes. However,
since POINTCUT classes are now in fact aspect classes, one
should expect existing concepts for aspect instantiation to
provide sufficient solutions for instantiation of PoIiNTCUT
classes, too.

6. TOWARDS A CALCULUS FOR POINT-
CUTS

One of the most debatable properties of AspectJ relates to
the way complex pointcuts can be constructed from simpler
ones. By using only one syntactic category for join point
sets, static join point filters and dynamic conditions the
syntax allows to define pointcuts whose semantics cannot
directly be derived from the language definition. Consider
as an example the pointcut if (true). This pointcut lacks
a set of join points and only defines a (tautological) run-
time condition. The intuitive semantics of this pointcut is
“always”. We could find no text describing how to convert
“always” into an enumerable set of triggers. By contrast we
claim, that a pointcut without an explicit set of join points
is not well-defined. A second example which produces the
same problem in quite a different manner is the pointcut
'call(foo(..)). By negating a single trigger we get the set
“all possible events but one”.'? Again “all possible events”
lacks a sound definition.

Thirdly, the operators && and | | are problematic mostly be-
cause they allow many expressions that define empty sets of
join points. For a large number of such nonsensical point-
cuts it is trivial to detect the inherent contradiction. E.g.,
the pointcut call(foo) && set(bar) can never match any
join points regardless of its arguments foo and bar, simply
because it defines the intersection of disjoint sets (join point
kinds). We argue that a type system for an extension of a
statically typed language as Java should preserve the prop-
erty that structurally invalid programs be detected as vio-
lations against the typing rules.'® In our model call(foo)
&& set(bar) would be syntactically illegal because each join
point can only have one kind, whereas this pointcut tries to
intersect the kinds call and set.

We propose to solve this problem by a clear distinction into
the following syntactic categories:

e Each aspect binding requires a join point set defined
by a scope, a kind and optional constraints (Sect. 2.3).

e An aspect binding links a trigger defined by a join
point query to an aspect method, establishing the join
point interception (JPI) mechanism for the involved
program elements (Sect. 2.1).

e An aspect guard defines run-time conditions for actu-
ally triggering the aspect depending on run-time values
(Sect. 2.4).

For a valid aspect binding the following elements are oblig-
atory: scope, join point kind, binding kind (before, after,

12Note, that this is different from “all calls except those to
foo”. By negating a join point the expression is actually
changed into a join point constraint, which is then applied
to the empty pointcut, which probably means “always”.
13Indeed the AspectJ compiler can detect a number of prob-
lems in pointcut definitions. The problem is, users may write
many linguistically correct pointcuts which at a closer look
are probably not what he or she wanted to express. Not only
for the name of the corresponding compiler option (Xlint)
one feels to be thrown back to the time of 1int which was
motivated by C’s property of allowing many programs that
should be considered dangerous.

PC1
fire
trig3()

Figure 6: A cascade of Pointcuts.

replace) and aspect method. Static constraints (as part of
the query) and run-time guards are optional.

An AOP language may also support set operations and/or
functional operators over several join point queries, provided
the join point kinds and their signatures are compatible, but
composition of different categories is syntactically prohib-
ited.

When extending this model to include POINTCUTS as defined
in the previous sections the central questions is how com-
position of POINTCUTS can be integrated into this calculus.
In previous approaches we find two extreme answers: In As-
pectJ pointcuts can freely be combined with each other and
with any element of a join point specification. The trace-
matches approach defines exactly two levels of pointcuts:
elementary (Aspect]) pointcuts and tracematches, defining
histories of elementary pointcuts. In this approach trace-
matches simply cannot be composed further. We see how
this two level approach avoids additional complexity, but if
POINTCUTS are to be seen as first-class things, we should not
content without a universal calculus for POINTCUT compo-
sition.

The interesting point about realizing POINTCUTS as classes
lies in the fact that compositionality is given for free: By
defining POINTCUTS merely as a disciplined use of aspect
classes, existing combination concepts suffice to compose
PoINTCUTS from other POINTCUTS. Recall that the purpose
of a POINTCUT class is to collect input events (via inbound
JPI) and produce one output event defined as a call to the
predefine method fire. By explicitly representing the firing
of a POINTCUT in the imperative part of the language, this
event automatically becomes a potential join point that can
be intercepted by aspect bindings at the next level. Until
now we only saw how an actual aspect method is bound to
the firing of a PoINTCUT. But if an aspect class may in-
tercept the fire event, so can any other POINTCUT class (by
virtue of being an aspect class). This way it is possible to
construct cascades of POINTCUTS, each POINTCUT consum-
ing events from the lower level POINTCUTS or join points,
which is illustrated in Figure 6.

The ability to create cascades of POINTCUTS is very well in
line with the interpretation of POINTCUTS as reverse meth-
ods. The effect of executing a method is the execution of
those methods that are mentioned in method calls within
the method body thus creating a call graph of arbitrary

depth. Conversely, a POINTCUT can be triggered by the
firing of other POINTCUTS which are mentioned within the
PoINTCUT definition thus creating a trigger graph of arbi-
trary depth. A POINTCUT with only static join points as
triggers is a leaf in this graph.

This anti-symmetry suggests that POINTCUTS could even
be recursive, meaning that the firing of a POINTCUT can
be consumed by the very same POINTCUT again. Perhaps
POINTCUT recursion is just a purely academic exercise, be-
cause any effect constructed by such POINTCUT recursion
can also be implemented within the methods of the POINT-
cuT. On the other hand, perhaps a history POINTCUT could
use this mechanism for re-initializing itself after each firing.

We leave the question whether recursive POINTCUTS are use-
ful to be answered by future practical application. What
matters more is the fact that for the composition of POINT-
cuTs there’s absolutely no need to define a new calculus. By
defining the firing of a POINTCUT as the call to the special
method fire the new construct is folded back into the base
language. Thus any reflection about method calls automat-
ically applies to the firing of POINTCUTS, too. In addition
to direct cascades of POINTCUTS this also entails the option
to quantify over POINTCUTS. Within a join point query fire
methods of POINTCUTS can be matched just like any other
method. This allows to define aspects that, e.g., monitor
all Pointcut firing of another aspect. Please note, that this
may be quite different from observing the execution of as-
pect methods. Firstly, an individual POINTCUT may fire
without invoking any aspect method (yet). Secondly, for a
given aspect method it may be interesting to observe which
individual POINTCUT actually caused its execution.

7. RELATED WORK

Throughout the paper we have shown to what degree previ-
ous publications support the individual points of our argu-
mentation. The most relevant sources for inspiration were:
Lammel’s semantics based on method call interception [16],
Eichberg’s suggestion to use a query language (XQuery) for
defining sets of join points [8]. The work on event based
AOP (EAOP) provided the metaphors event and monitor
[7] as well as the definition of stateful aspects [6]. Our con-
cept of POINTCUTS as reverse methods could be seen as a re-
finement of the aspect-as-monitor view. Also, the abc-group
stimulated our thoughts by their work on tracematches [2].

In early stages of our research, logic meta programming [12]
was a favored candidate for our join point language. In
our perception of aspect-oriented research this was the first
pointcut language based on an established calculus. Later,
Ostermann et al have shown the maximum expressiveness
of a pointcut language based on logic meta programming
(ALPHA) [20]. Practical applicability of their meta-circular
interpreter still remains to be shown. Our efforts in this pa-
per followed quite a different goal: Instead of adding a most
expressive second language (Prolog) and a set of rich data
models we tried to boil down the issue of aspect binding
to the simplest possible concepts and mechanisms. While
ALPHA provides a uniform framework for all kinds of point-
cuts, we see advantage in a model, that clearly separates
parts introducing different degrees of dynamism. In this
sense, much like in AspectJ, ALPHA does not support to

distinguish between binding to a join point versus binding
to a pointcut. Such distinction is relevant because in our
model all bindings to join points can be resolved statically,
while a POINTCUT requires runtime computation and addi-
tional dispatch. In neither AspectJ nor ALPHA there is an
easily identifiable language subset that can be resolved stat-
ically. Also type checking across sub-languages poses new
problems.

A marriage of both concepts could, however, be envisioned
when allowing a POINTCUT class in our model to query a
prolog engine whether or not to fire at a given input event.
This would restrict the ALPHA approach by forcing the pro-
grammer to make all shadows explicit. Advantages of such
potential marriage have not been investigated, yet.

Our critique of AspectJ has been discussed throughout the
paper. In essence we identified the lack of different syn-
tactical categories for fundamentally different elements and
the lack of a taxonomy of join point kinds. As a result the
mechanisms for pointcut composition appear as ad-hoc solu-
tions. Clearly that language defines a landmark and newer
languages must demonstrate that they don’t fall behind the
capabilities of AspectJ. Our interest in discussing AspectJ
was in making explicit those individual concepts that are in
one way or other blurred and blended in AspectJ.

As mentioned in the introduction, this paper does not try to
give a formal model of AOP. Rather than giving a complete
specification of a particular problem we try to give a full
picture of how behavioral cross-cutting can be founded on
simple, well-understood concepts. The set of elementary
concepts should provide a suitable basis for aspect languages
that are both practical and supportive of static reasoning.

8. CONCLUSION AND FUTURE WORK

The model presented in this paper separates the following
ingredients of aspect binding:

1. join points

2. sets of join points as defined by queries over the pro-
gram’s ASG. These queries can again be decomposed
into parts scope, kind and constraints.

3. join point interception as the mechanisms for binding
aspect methods to events in the base program

4. POINTCUT classes as a composition mechanism for multi-

event triggers.

Conditional aspect bindings can be expressed by attaching
filters to the JPI mechanism.

All POINTCUTS that require multiple trigger events for firing
reason about sequences of events over time. In an impera-
tive host language sequences of events are produced by se-
quences of statements. It seems most natural to also use the
imperative part of a language also for detecting sequences of
events. Aspects that require this capability must be stateful
aspects in order to store information about how much of the
sequence has already been detected.

When saying that the imperative part of a language is suit-
able for detecting sequences of events, we ignored the fact,
that an imperative implementation of such monitors is much
more verbose than more specialized notations as in [7] or [2].
We currently work on applying model transformation tech-
niques to easily provide simpler syntax for certain POINTCUT
patterns like cflow and history POINTCUTS.

Of course naive implementations of history POINTCUTS also
cannot reach the efficiency of tracematches as realized by
the abc compiler, let alone compare to efficient implemen-
tations of the cflow construct. The remaining challenge is
a challenge of compiler optimization in the following sense:
commonly used POINTCUT structures should be specified by
pre-defined POINTCUT classes shipped as libraries that are
bundled with the compiler. While at client level such PoiNT-
CUT classes behave exactly as specified, the compiler is free
at translating the pre-defined POINTCUTS into arbitrarily
optimized code.

The model of POINTCUTS as aspect classes finally provides
a desirable closedness of language as it has been requested
in [11]: in our model it is possible to have POINTCUTS quan-
tifying over other POINTCUTS.

9. REFERENCES

[1] C# language specification, 2. edition. Standard
ECMA-334, 2002.

[2] Chris Allan, Pavel Avgustinov, Aske Simon
Christensen, Laurie Hendren, Sascha Kuzins, Ondfej
Lhoték, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace
matching with free variables to AspectJ. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming systems
languages and applications, pages 345—-364. ACM
Press, 2005.

[3] The Aspect] Team. The AspectJ”™ Programming
Guide.
http://www.eclipse.org/aspectj/doc/released /progguide.

[4] Pavel Avgustinov, Aske Simon Christensen, Laurie
Hendren, Sascha Kuzins, Jennifer Lhotak, Ondrej
Lhotak, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. abc: An extensible
AspectJ compiler. In Peri Tarr, editor, Proc. 4rd Int’
Conf. on Aspect-Oriented Software Development
(AOSD-2005), pages 87-98. ACM Press, March 2005.

[5] Lodewijk Bergmans and Mehmet Aksit. Principles
and design rationale of composition filters. In Filman
et al. [10], pages 63-95.

[6] Rémi Douence, Pascal Fradet, and Mario Siidholt.
Composition, reuse and interaction analysis of stateful
aspects. In Karl Lieberherr, editor, Proc. 3rd Int’
Conf. on Aspect-Oriented Software Development
(AOSD-2004), pages 141-150. ACM Press, March
2004.

[7] Rémi Douence, Olivier Motelet, and Mario Siidholt. A
formal definition of crosscuts. In A. Yonezawa and
S. Matsuoka, editors, Metalevel Architectures and

[13]

[14]

Separation of Crosscutting Concerns 3rd Int’l Conf.
(Reflection 2001), LNCS 2192, pages 170-186.
Springer-Verlag, September 2001.

Michael Eichberg, Mira Mezini, and Klaus Ostermann.
Pointcuts as functional queries. In Wei-Ngan Chin,
editor, Programming Languages and Systems: Second
Asian Symposium, APLAS 2004, LNCS, pages
366—382, Taipei, Taiwan, November 2004.
Springer-Verlag Heidelberg.

R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Peri Tarr, Lodewijk Bergmans, Martin Griss, and
Harold Ossher, editors, Workshop on Advanced
Separation of Concerns (OOPSLA 2000), October
2000.

Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and
Mehmet Aksit, editors. Aspect-Oriented Software
Development. Addison-Wesley, Boston, 2005.

Kasper Graversen and Kasper @sterbye. Aspects of
aspects — a framework for discussion. In Furopean
Interactive Workshop on Aspects in Software, 2004.

Kris Gybels and Johan Brichau. Arranging language
features for pattern-based crosscuts. In Mehmet Aksit,
editor, Proc. 2nd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2003), pages 60-69.
ACM Press, March 2003.

Bruno Harbulot and John R. Gurd. A join point for
loops in Aspectd. In Gary T. Leavens, Curtis Clifton,
and Ralf Lammel, editors, Foundations of
Aspect-Oriented Languages, March 2005.

S. Herrmann and C. Hundt. ObjectTeams/Java
Language Definition version 0.8 (OTJLD).
http://www.Object Teams.org/def/0.8/, 2002-2005.

Stephan Herrmann, Christine Hundt, Katharina
Mehner, and Jan Wloka. Using guard predicates for
generalized control of aspect instantiation and
activation. In Dynamic Aspects Workshop (DAW’05),
at AOSD 2005, Chicago, 2005.

Ralf Lammel. A semantical approach to method-call
interception. In Proc. AOSD’02, pages 41-55,
Enschede, Netherlands, 2002. ACM Press.

Bertrand Meyer. Object oriented software
construction. Prentice Hall International, New York,
second edition, 1997.

Object Teams home page.
http://www.Object Teams.org.

Object Teams Development Tooling download page.
http://www.Object Teams.org/distrib/otdt.html.

K. Ostermann, M. Mezini, and C. Bockisch.
Expressive pointcuts for increased modularity. In
Proc. ECOOP’05, Glasgow, UK, July 2005. Springer
Verlag, Berlin.

10

(21]

(22]

H. Rajan and K. Sullivan. Generalizing aop for
aspect-oriented testing. Technical Report CS-2004-30,
Department of Computer Science, University of
Virginia, September 2004.

Jia Xu, Hridesh Rajan, and Kevin Sullivan. Aspect
reasoning by reduction to implicit invocation. In
Curtis Clifton, Ralf Lammel, and Gary T. Leavens,
editors, FOAL: Foundations Of Aspect-Oriented
Languages, pages 31-36, March 2004.

