Using Guard Predicates for Generalized Control of Aspect
Instantiation and Activation

Stephan Herrmann Christine Hundt*

Technical University of Berlin
{stephan,resix,mehner}@cs.tu-berlin.de

ABSTRACT

Many aspect-oriented programming languages employ static
transformations in order to produce the executable system.
Some aspects, however, should only be effective if certain
conditions are fulfilled that can only be evaluated at run-
time. The naive approach of using conditionals within the
advice code easily leads to scattering and tangling regarding
these conditionals, suggesting that they should be separated
from the advice code. In this paper we analyze how aspects
can be made conditional, i.e. how their effect can be con-
trolled based on runtime values.

We present an extension to the ObjectTeams/Java program-
ming language that provides a flexible means for controlling
the instantiation and activation of an aspect implemented
by a ”team” and its roles by means of guard predicates. We
discuss different points in a program for which we consider
a guard predicate suitable. We argue that this approach is
more general than the ways other aspect languages control
aspect instantiation and activation. Our approach makes
use of the fact that in Object Teams aspects are imple-
mented as first-class objects, which have full support for
inheritance and polymorphism.

1. MOTIVATION

The goal of AOP is to reduce tangling and scattering. AOP
has successfully contributed to separating orthogonal and
crosscutting code into aspect modules. Besides statically
defined and deployed aspects, dynamism of aspects increas-
ingly attracts researchers’ interest. In some situations, it is
desirable to invoke or change aspect behavior based on the
dynamics of program execution.

In previous work, we have identified three dimensions to
classify dynamism of aspects [14].

e The dimension of aspect dynamism addresses concep-
tually different life-cycles for aspects. Here we distin-
guish (a) static and dynamic definition of aspects, (b)
static definitions of aspects which can be added and
removed at runtime, and (c) static and dynamic acti-
vation of aspects.

e The dimension of adaptation scope distinguishes be-
tween type level and instance level control, assuming

*This work has been supported by the German Federal Min-
istry for Education and Research under the grant 01ISC04A
(Project TOPPrax).

Katharina Mehner*

Jan Wloka*
Fraunhofer FIRST

jan.wloka@first.fhg.de

that aspects can be instantiated like classes in object-
oriented languages.

e The dimension of weaving distinguishes between dif-
ferent points in time for the technical weaving pro-
cess ranging from pre-compile time weaving to runtime
weaving.

To give programmers maximal control over aspect dynamism
it is desirable that these dimensions be clearly distinguished
in language support. Therefore, we examine how this can be
achieved in the context of the core language elements which
have already been identified for AOP: advice (or compara-
ble elements) containing the actual code of the crosscutting
concern, and pointcuts for matching events in the execution
of a program.

Existing AOP approaches support the above dimensions to
different extents and in different ways. We observe deficien-
cies especially related to the concepts of dynamic activation
control and instance level activation.

In approaches with static weaving and without explicit sup-
port for dynamic activation nor instance specific activation,
these concepts have to be simulated using conditionals such
as if-statements. Hence, advice code becomes tangled with
code for activation control. This is especially dissatisfying
because AOP made a start in avoiding one of the principal
maintenance nightmares: nested conditionals spreading all
over the code, resulting in programs that are more concerned
with deciding what to do than with doing.

Approaches which have taken a step further support for
separation of concerns include specialized support for con-
trolling instantiation and activation of aspects. In AspectJ
[16] keywords like perthis and pertarget allow to control
aspect instantiation, but only a limited set of pre-defined
strategies is available. Arbitrary querying of state is possi-
ble with the if-pointcut [16], but here pointcuts tangle the
interceptions of events with activation control.

We feel that the separation of conditionals and actions can
be taken one step further by elevating the conditions used
to control different kinds of activation to a prominent lan-
guage feature. Between join points and the action attached
to them, this paper suggests a third concept: guard predi-
cates. The main contribution of this paper is to report on
an experiment integrating guard predicates into the aspect-
oriented programming language ObjectTeams/Java.

Relating AOP to more fundamental concepts of program-
ming should help to identify a general system of coordinates
for describing AOP languages, which should eventually lead
to a common theory of AOP. Guard predicates are a candi-
date for such a fundamental concept.

After providing explicit support for guard predicates, other
parts of AOP languages — most notably join point lan-
guages — can be stripped down and will eventually reveal
those atomic concepts that are new in AOP.

The paper is structured as follows: Sect. 2 gives a brief
introduction to the language ObjectTeams/Java. Sect. 3
motivates the need for more flexible control over aspect ac-
tivation. Sect. 4.1 explains how we integrate guard predi-
cates into ObjectTeams/Java for controlling aspect activa-
tion. Sect. 4.2 relates guard predicates to issues of instanti-
ation. Sect. 5 discusses the results in the context of related
work. In Sect. 6 we conclude and outline some future work.

2. AN OVERVIEW OF OBJECT TEAMS

Before introducing the integration of guard predicates into
ObjectTeams/Java, we give a brief overview of this language
(see also [10, 20]). Object Teams introduces two new kinds
of classes: teams and roles. A role is used to decorate an
existing class, called its base. Teams are a structural concept
for encapsulating collaborating roles. An instance of a team
encapsulates a set of role instances.

A role instance intercepts method calls to the decorated ob-
ject if a callin method binding between a role method and
one or more base methods has been specified. A callin can be
of type before, after, or replace (similar to an advice weave as
found in AspectJ [16]) and inserts additional behavior into
the control flow. A role together with its enclosing team can
therefore be seen as an aspect.

Callin bindings of a role are only effective if the enclosing
team has been explicitly activated. When a callin-bound
base method is called the base object is ”translated” to the
corresponding role. The translation is called lifting [12].
Next, the bound role method is called. The lifting transla-
tion must be aware of any existing role-base pairs. To this
end, every team internally has a role registry for storing and
retrieving roles. If no appropriate role is found it is created
on demand and stored in the registry.

2.1 Example

The following source code illustrates the concepts team, role
and callin bindings by the example of an automatic teller
machine (ATM). We start with a most simple Account class
and step-by-step introduce new requirements which are to
be added non-invasively.

public class Account {
private int balance;
public boolean debit(int amount) {
if (!(amount>balance)) {
balance —= amount;
return true;
return false;
}
}

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

An Account is a regular (base) class offering the functional-
ity of debiting an amount (among other things).

public team class ATM {

public int payCash(

Account account, int amount)
boolean ok = account.debit(amount);
if (ok) return amount;

else return O0;

}
// role definition:
protected class FeeAccount playedBy Account {
callin boolean debitWithFee(int amount) {
int fee = calculateFee(amount);
return base.debitWithFee(fee+amount);

// replace callin binding:
debitWithFee <— replace debit;
int calculateFee(int amount) {...}

}
}

The ATM allows to withdraw money via the method
payCash(..)'. So far only standard Java features have been
used. However, the team modifier in line 12 denotes that this
class is realized as a team class. An additional requirement
to be fulfilled is to collect a fee when withdrawing money.
This is realized by the role FeeAccount which decorates the
base class Account. Inner classes of teams are per definition
roles. The decoration relationship is stated by the playedBy
keyword (see line 21).

Via a replace callin binding the role method debitWithFee
is dedicated to intercept the base method debit (see line
27). The effect of this binding is the following: Whenever
Account.debit is called the target is lifted to a FeeAccount
role. The control flow is redirected to its debitWithFee
method, which calculates the fee and calls the original base
method with the increased amount via base.debitWithFee.
In analogy to super calls, a base call uses the name and
signature of the enclosing role method.> This base call is
comparable to the proceed in AspectJ.

3. MORE CONTROL OVER ASPECTS

So far, the introduced concepts of Object Teams allow gen-
eral control over the activity of aspects by activating and
deactivating teams and all contained roles. In many cases,
this may be enough, but in more complex applications a
more flexible control will be needed.

Reconsidering the ATM example, it is questionable if the
general collection of fees is fair. The role-base binding stated
by the playedBy-clause generally attaches the fee-collecting
role to every Account (base-)object. Actually, an ATM be-
longs to a certain bank and only for withdrawal from a for-
eign account an additional fee is debited. Let’s assume also,
that it should not be possible to query the balance of a for-
eign account.

! Authorization needs are omitted for simplicity.

2This syntax is further motivated by the goal to keep the
callin method independent of any bindings to (possibly mul-
tiple) base methods.

31
32
33
34

In the following, a more realistic behavior for an ATM is
achieved. The addition of a Bank attribute to an Account
as well as to an ATM is straightforward. More importantly,
in order to fine-tune the general behavior, we need a more
flexible control over the activity of the aspect encapsulated
in the FeeAccount role. So far, this is only possible with
explicit hand-coded if-statements in the advice code. The
following source code only shows the relevant additions com-
pared to the first version®:

public class Account {
private Bank myBank;
public Bank getBank() { return myBank; }

L

public team class ATM {
private Bank bank;
public int payCash(Account ac, int am) {...}
public int getBalance(Account account) {...}

public class ForeignAccount playedBy Account

callin void debitWithFee(int amount) {
if (ATM. this.bank.equals(getBank())) {
base.debitWithFee (amount);

} else {

int fee = calculateFee (amount);
base.debitWithFee(fee+amount));

}

callin int checkedGetBalance ()
if (ATM. this.bank.equals(getBank())) {
return base.checkedGetBalance();

} else {

throw new AccException (”foreign account”) ;
}

}

debitWithFee <— replace debit;
checkedGetBalance <— replace getBalance;
abstract Bank getBank();

getBank —> getBank;

The new requirement of restricting the query of balance, is
realized as another callin method denying the call to
getBalance for foreign accounts (see line 52). In line 45
and line 53 if-statements are used to ensure the desired be-
havior. If the callin methods are called for own accounts
they just forward to the original base method (see lines 46
and 54). Otherwise, they perform the special behavior of
foreign accounts. Lines 61 and 62 are used to define and
bind the method ForeignAccount.getBank via callout* to
the corresponding base method, which is needed in the con-
ditions.

Although the required behavior is now achieved some bad
smells can be observed. First of all, the condition is tan-
gled with the advice code. Secondly, we see a scattering of
the (identical) condition over the two role methods. What
we really want to state is that the role ForeignAccount is

3Note, that the role is now called ForeignAccount, because
this name better states its meaning.

4 Callout bindings declaratively specify the forwarding from
a role method to a base method. Reverse to callin bindings,
which are denoted with the symbol ”<-" callout bindings
use the symbol ”->".

only valid for accounts belonging to a different bank than the
ATM.

We need a more flexible control over the activity of aspects
and we want to get rid of the drawbacks observed in the
hand-coded version. The following section shows how the
integration of guard predicates can achieve this goal in a
more elegant way.

4. GUARD PREDICATES IN OBJECT-
TEAMS/JAVA

In the previous section we have illustrated the problem of
condition tangling as it pertains even if some form of AOP
is applied. In order to remedy this problem we go back to
fundamental concepts of programming and try to identify
ECA elements (”event-condition-action”) in AOP:

e We interpret join points as places in a program that
emit events.

e We consider advice weaving as an adaptation of the
action that happens at join points.

e The contribution of this paper is the prominent role
which conditions play as a middleman between events
and actions.

In order to distinguish conditions in this sense from condi-
tions in the imperative part of the language we will use the
notion of guard predicates. In slight adaptation of existing
ECA formalisms, we define that a guard predicate is to de-
termine whether the firing of a given event should actually
cause the adapted action to be performed. Otherwise the
original behavior is performed unchanged.

In this section, we will first introduce the places where guards
can be attached to specific entities of an ObjectTeams/Java
program (4.1) and show how aspect activation can be con-
trolled using guards. Also aspect instantiation can be con-
trolled by guards as we present in Sect. 4.2. We will then
relate guards to other concepts in the language (Sect. 4.3).

4.1 Controlling aspect activation
Callin-bindings as described in the previous section cause
the control flow to leave a base object and enter the cor-
responding role object. In our model, guard predicates are
used to filter these added control flows. The effect of a guard
evaluating to false is that the current callin trigger is re-
jected and the base behavior is performed unmodified. If
a guard evaluates to true (or if no guard is present) the
callin trigger is effective and the adaptation defined by the
corresponding role is applied. We say, an aspect (team and
its roles) is active if its callin bindings are effective. Thus,
guard predicates are a means to control aspect activation.

We support guard predicates at four levels of granularity.
The first level refers to method bindings. This is a straight
forward adoption of tests for dynamic properties as they are
supported, e.g., by the if pointcut designator in AspectJ.
Semantically, guards of method bindings do not differ from
the if designator, we just syntactically separate the guard
to be evaluated at runtime from the statically computed set
of join points.

Here is the syntax of a guarded method binding (details of
the when clause will be discussed below):

protected class MyRole playedBy MyBase {

/% callin method binding with guard */
void rmeth(int x) <— after void bmeth(int y)
when (boolean expr. using this (refers to role) and x) ;

As a first means for generalization we also support guards
attached to a method. In ObjectTeams/Java the action to
be performed at a join point is defined by regular methods®.
This way several method bindings may bind to the same role
method. Attaching a guard predicate to a role method has
the semantics of attaching the guard to all method bindings
of this method. Only if a method is invoked due to a callin
binding, guards are evaluated and may reject the current
trigger.

In the next level of granularity guards are attached to role
classes such as in the header of the following role class:

protected class MyRole playedBy MyBase
when (boolean expression using this (refers to role))

//class body omitted

In this case the idea is to enable or disable a role instance
based on the evaluation of a guard predicate. The guard is
evaluated before any callin bindings to an instance of the
current role class are considered.

Finally, by attaching a guard predicate to a team class, all
role classes of the team are consistently enabled or disabled
based on the evaluation of the guard predicate.

The following table summarizes the locations where guard
predicates can be attached and describes the respective ef-
fect. Note that guard predicates are only checked if a method
is called via callin.

affected role methods

this role method if called due to
this binding

this role method

all role methods of this role

all role methods of all roles in
this team

location/level
role method binding

role method
role
team

4.1.1 Scope of guard predicates

First of all, all predicates may access the current team in-
stance, because only with an existing instance of the team,
any callin bindings are considered at runtime. Within a
team level guard, the team instance is simply referred to as
this. In practical examples this proves very useful, since
a team instance can be used to store arbitrary context in-
formation that is valuable for evaluating the predicate. We
will further discuss the role of teams for context based pro-
gramming in Sect. 5.4.

®Only for replace callin bindings a special kind of method
is required that is marked by the callin modifier.

65
66
67
68
69
70

72
73
74
75
76
7
78
79
80
81
82
83

All guards at the level of role classes or below also have
access to the role instance whose method is about to be
invoked. Also the role instance can be used to store con-
text or history information, that will help to formulate the
predicate. In a role level guard, this refers to the role in-
stance and the notation MyTeam.this to the enclosing team.
Guards of methods and method bindings also expose pa-
rameter values (except for the shorthand variant of callin
bindings, which may omit method signatures).

With a role level guard predicate the ATM example from
section 3 can now be rewritten as follows:

public team class ATM {

.p'l.xblic class ForeignAccount

playedBy Account

when (!(ATM. this.bank.equals(getBank())
{

callin void debitWithFee(int amount) {
int fee = calculateFee(amount);
base.debitWithFee (feet+amount));

callin int checkedGetBalance() {
throw new AccException (" foreign account”) ;

}

debitWithFee <— replace debit;
checkedGetBalance <— replace getBalance;
abstract Bank getBank();

getBank —> getBank;

The guard predicate attached to the ForeignAccount role
in line 69 ensures that this role and therefore all its callin
bindings are only effective for foreign accounts. This way,
all previously necessary partial checks are substituted by
one specification, expressing exactly our intended require-
ment. Also a clean separation of advice code and activation
conditions is achieved.

4.2 Controlling aspect instantiation

In most AOP languages, instantiation of aspects is fairly
different from instantiation of regular objects. Commonly,
aspects are instantiated automatically when needed without
using a new expression. Aspect instances are yet important
because they allow to store state of the aspect. Technically,
aspect behavior is usually implemented as instance methods
of the aspect, with the only exception of ”advice” which
lacks some important properties of methods.

Aspect instantiation attaches an aspect instance (in Object
Teams: role object) to one or more base objects. The Ob-
ject Teams approach pays very close attention to providing
all benefits of instantiation also to aspect related language
features. Therefore, actual role objects are used instead of
augmenting base classes with additional features. In this
context, role instantiation is such an essential concept that
the used strategy should not be hard-coded into the lan-
guage as a fixed set of options. Rather should programmers
have the chance to effectively control the strategy of role
creation. Different from regular objects, the default for role
objects is an implicit creation on demand. However, client
code may force the creation of additional roles and may pre-
vent the default creation of roles.

4.2.1 Positive control

Before we demonstrate how guards may prevent role cre-
ation, let us briefly review the means ObjectTeams/Java
provides for triggering role creation.

The default constructor of each bound® role class expects as
its only parameter an instance of the connected base class.
This constructor can be used from within the context of a
team. The language implementation ensures that role ob-
jects created using this constructor are also registered in
the team for consistent integration with the mechanism of
lifting.

As a second option, methods of a team may declare an argu-
ment with a dual type: the caller is required to pass a base
object yet the method body receives a role object. The sig-
nature for this declaration looks as follows:
teamMethod (MyBase as MyRole r). When calling such a
method, on demand creation of roles remains implicit, how-
ever, the existence of a role object for the given base object
is ensured upon entry to this method.

4.2.2 Negative control

Whenever a callin binding is about to invoke a role method,
first the base object is lifted to its corresponding role object.
If that role object is not yet present in the team’s registry,
a fresh role is automatically created. The guards we have
presented so far reside at the role side of a binding. Thus,
lifting happens before evaluation of the predicate. This has
the advantage, that information in a pre-existing role object
can be used within the predicate.

By attaching the modifier base to any guard predicate, the
semantics is changed such that the predicate is evaluated at
the base side, i.e.: prior to lifting. If a base guard evaluates
to false no lifting occurs and the aspect has no effect at all,
not even creating a role.

It is important to see, that lifting potentially has side effects.
First, creation of a role is an implicit side effect, affecting
the team’s registry. Second, a custom role constructor may
implement arbitrary side effects. Only a base guard ensures,
that in the negative case no side effect has been caused. A
future version of the compiler for ObjectTeams/Java will
also include an analysis, whether guard predicates are in
fact free of side effects.” Syntactically, a guard predicate
may invoke any boolean method in scope.

As an example, consider again the case of a predicate at-
tached to a method binding;:

protected class MyRole playedBy MyBase {

/* callin method binding with base guard x/
void rmeth(int x) <— after void bmeth(int y)
// optional parameter mapping omitted
base when (boolean expression using base and y) ;

}

Please note that the scope of a base predicate is at the

A role with a playedBy clause is bound.

"The need for side effect analysis fits nicely with other work
on Object Teams where a concept of readonly interfaces is
used to enforce representation encapsulation [11].

84
85
86
87
88
89
90
91
92
93
9
95

— control flow
—> references

(t:MyTeam

MyTeam.this] MyTeam.this

‘ base when (..) |

lifibtor

Figure 1: Characteristics of Guards in Object Teams

base side. The base object at which the join point trigger
occurred can be accessed using the special identifier base.
Method parameters available in the predicate are those of
the base method (here: y). In anticipation of the control
flow into an existing team instance, the team causing the
callin interception can be accessed using MyTeam.this.

Figure 1 shows which objects a predicate can access, inde-
pendently from the level of granularity. A call to MyBase
intercepted by MyRole is controlled by a guard predicate. A
when predicate can refer to the involved role via this, while
a base when has access to the corresponding base object via
base.

Now it is possible to further enhance the ATM example by
controlling the instantiation of the ForeignAccount role. If
an account belongs to the same bank as the ATM, it will
never need the extra functionality of the ForeignAccount
role. Using a base side guard prevents the creation of roles
for such accounts, thus preventing all possible side effects.

public team class ATM {

public class ForeignAccount
playedBy Account
base when
I(ATM. this . bank.equals (base.getBank())

callin void debitWithFee(int amount) {...}
callin int checkedGetBalance() {...}

L
}

Line 89 shows the mentioned base when predicate. We
now have direct access to the Account.getBank() method
through base in the guard predicate and do no longer need
the indirect access via callout.

4.3 Relating guards to other concepts

The idea of guard predicates originates from the fundamen-
tal issue of controlling the flow of execution. The previous
section has shown how guards in ObjectTeams/Java can be
used to control also the instantiation of role objects where
the default behavior is otherwise an automatic instantiation
per team and per base object. In this section we investigate
the relationship of guards to other fundamental concepts of
(object-oriented) programming.

4.3.1 Guard combinations
When introducing predicates as a new language feature,
rather than relying on regular methods and method calls

only, care must be taken, not to break polymorphism and
dynamic dispatch. More specifically, predicates should be
able to exploit the inheritance structure of roles and base
classes.

In some situations more than one guard watches over the
callin to a single role method. On the one hand this can
occur if a role predicate is inherited and overridden in the
subclass. On the other hand a second dimension of combina-
tion appears if guards at different levels of granularity affect
the same role method. In both cases a reasonable strategy
for combining these predicates is needed.

Guards at different positions of the inheritance hierarchy:
The semantics of object-oriented inheritance is to refine the
behavior in subclasses. In analogy to this, guards in a sub-
classes are combined by logical and with the guards of its
superclass. Thus, the subclass can only further refine an
inherited guard predicate.

Guards at different levels of granularity:

If looking at a team-level guard predicate, the programmer
should be allowed to assume that this predicate is effective
for the whole team. For reasons of locality guard predicates
of inner entities may not invalidate outer ones. This means
that inner guard predicates may only refine the conditions
of outer ones. Thus, they are again combined by a logical
and with all outer predicates.

The case of polymorphism only seems to be more difficult
when considering base guards. Here, no role instance ex-
ists yet, thus dynamic dispatch to the most suitable role
class seems impossible. However, guard predicates are in-
tegrated into the language in such a way, that dispatching
can indeed exploit all kinds of polymorphism involved. A
detailed description of this integration would require to dive
into the mechanism of smart lifting as defined in [12], which
establishes a new level of polymorphism called translation
polymorphism. Such details are, however, beyond the scope
of this paper. For the programmer, the situation could be
interpreted as a role instance that exists virtually, whereas
the point in time of evaluating the base guard is early enough
to prevent the role object from materializing.

4.3.2 Reflection

Object Teams also aims at supporting reflection with re-
spect to teams, roles, and role-base relationships. As men-
tioned before, each team instance internally has a registry
of known role objects indexed by their base object. Pro-
grammers may make use of this registry using the following
reflective methods defined in org.objectteams.Team®. The
last one of these methods does not access the registry but
can be used to inspect whether a control flow has already
been intercepted by at least one callin binding.

boolean hasRole (Object aBase);
boolean hasRole (Object aBase,

Class expectedRole);
Object getRole (Object aBase,

Class expectedRole);
void unregisterRole (Object aRole);
boolean isExecutingCallin();

8The predefined super class of all team classes

96
97
98
99
100
101
102

104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121

It is desirable and possible to use these methods within
guards. These methods allow to write the specification of
guards in a more concise and more expressive way. Deter-
mined by the signature, the first three methods can only be
used in a base-level guard because they require a reference
to a base object.

4.3.3 Example using reflection

We now conclude the introduction of guard predicates in
Object Teams with an example which summarizes several
concepts and illustrates the use of reflective predicates.

We want to extend the account example as follows: If an
account is registered to collect a special bonus, every time
an amount of more than 1000 is deposited, additional 1%
of the amount is credited. To this end, we create another
team SpecialConditions which is responsible for the new
functionality.

public class Account {
private int balance;
public void credit(int amount) {
balance += amount;
}

-

public team class SpecialConditions {
public void participate
(Account as BonusAccount ba) {}

public class BonusAccount
playedBy Account
base when(SpecialConditions. this.hasRole(
base, BonusAccount.class))

public void creditBonus(int amount)
when (amount > 1000)

{

base.creditBonus (amount+(amount/100));

creditBonus <— replace credit;

}

This team provides a registration method participate which
is used to register an account for the special conditions (see
line 105). Here, the explicit role creation mechanism as de-
scribed in 4.2.1 is used.

The base side guard predicate in line 110 checks, if the base
object already has a role in this team. If this is not the case
it prevents lifting (and thus role creation). In combination
with the registration method this means that BonusAccount
roles are never created automatically via lifting but have to
be explicitly registered first. This is exactly what we want
for our bonus collection.

The callin method in line 113 implements the collection of
the bonus. It replaces the original Account.credit method
(see line 118) and performs a base call with the increased
amount of money. In line 114 we use an additional predicate
to ensure that bonus is only credited for amounts greater
than 1000.

The following code snippet shows a usage example. Only

the account a1l is registered for the bonus collection, while
a2 does not have any special conditions.

... // main method:

Account al = new Account();
Account a2 = new Account();
SpecialConditions sc = new SpecialConditions();

sc.activate ();

sc.participate(al);
al.credit(2000); // — > balance += 2020
a2.credit (2000); // — > balance += 2000

5. COMPARISON TO RELATED WORK

There is a long tradition in specifying program behavior us-
ing triplets of events, conditions and actions (ECA). This
has been made popular by the statecharts notation [9]. In
this context the fundamentally different nature of events and
conditions has been elaborated in depth. This suggests that
also programming languages might benefit from a clear sep-
aration of pure events that happen at a specific point in time
versus conditions reasoning about state that persists over a
span of time.

The idea of ECA triplets has been taken up in the active
database context [5]. Typically, the events, also called trig-
gers, are changes in the database such as an insertion into a
table. The condition evaluation determines whether a cer-
tain action will be executed or not.

5.1 Event-based programming

A similarity of ECA systems and AOP systems has been
discussed in [4]. Also event-based AOP (EAOP) has been
proposed ([6]). Here, aspects are defined in terms of events
emitted during program execution. Identifying each hit of
a join-point with an event that can trigger further behavior
is well in line with the common understanding that AOP
opens new options for reasoning about points in the control
flow of a program. However, the EAOP approach does not
provide explicit support for conditions, leaving this to the
imperative part of the language. This leads to the tangling
of conditions and actions, which motivated the introduction
of guards predicates.

5.2 Predicates in programming

The expressiveness of predicates has been exploited for object-
oriented programs by the concept of predicate dispatch 3, 19].

Predicate Classes were first introduced as an extension of the
programming language Cecil [3]. They complement normal
classes. An object is automatically an instance of a predi-
cate class whenever it satisfies a predicate expression associ-
ated with the predicate class. Any of these predicate classes
can override a method of that object if it formulates more
specific conditions in a predicate. Consequently, method
look-up depends not only on the dynamic types but also
on dynamic object states (as captured by predicates). In
this approach, ill-defined predicates could lead to situations
where several methods or no method at all will be selected
during method look-up producing fatal run-time errors. To
prevent such errors, programmers have to follow specific dis-
ciplines.

Recently, an extension of Java with predicate-based dispatch
called JPred has also been presented [19]. In this approach
the problem of ambiguity and incompleteness of predicates is
addressed by modular type-checking using a theorem prover.

Both approaches have the benefit that they avoid large switch
statements and instance-of checks in individual methods,
which are also difficult to maintain. Instead, each method is
responsible for one case only, and the most specific method
according to the most specific predicate is chosen. Such a
system is easier to extend by new cases as each concern is
encapsulated in a method. This benefit has also been iden-
tified by [22].

While these approaches improve the separation of concerns
and flexibility, at the same time they introduce a complex
analysis problem that either has to be dealt with by the
programmer or by employing tool support based on for-
mal methods. The question remains whether this is always
tractable for the programmer.

By contrast, guard predicates in ObjectTeams/Java do not
select necessary methods for execution, but only filter
whether additional aspect behavior will be triggered or not
(before/after). If replace bindings are involved, semantic
consistency is of course subject to the implementation of
the replacing callin method, but this problem is intrinsic to
replace/around aspects and even to regular method over-
riding.® In our approach each explicit method call (base
level) will always select exactly one method. In no situation
the evaluation of guards will result in a run-time exception
signaling the inability to dispatch the method call.

Although this type safety in ObjectTeams/Java is achieved
by constraining the original idea of predicate dispatch, a
role class can be used in quite similar ways as a predicate
class. The difference is, that a base object does not com-
pletely change its type based on its state, but it may acquire
additional roles which can augment its state and adapt its
behavior.

5.3 Guards in Aspect-Oriented Programming
The Rondo model [18] defines aspect-like elements called
adjustments. In Rondo adjustments have an event and/or
a condition. Events are explicitly sent using a raise(...)
primitive. When the event associated with an adjustment is
fired, the adjustment is added to a given base module (an-
other adjustment). While this model has an explicit distinc-
tion between events and conditions, both parts are optional.
Also a strategy for evaluating conditions on demand is in-
cluded. Unfortunately, this model has not been followed up
after its definition.

AspectS [13] supports activation blocks by which method
wrappers can be configured to filter trigger events based on
program state. The examples seem to imply that activation
blocks are designed for the purpose of defining join-points
from a set of pre-defined activation blocks. While the con-
cept is actually quite similar to guard predicates in Object
Teams, AspectS supports activation blocks only at the level

°In ObjectTeams/Java, flow analysis is used to warn about
replace callin methods, that do not issue exactly one base
call on each control flow.

of method wrappers, thus leaving activation at the level of
larger program units to the discipline of the programmer°.

In the Composition Filters approach [2], filters are used to
achieve method interception. Filters can accept certain mes-
sages and thus intercept their execution. The matching pro-
cess is based on the target object, the message selector and
an optional condition. Conditions are reusable side-effect
free boolean methods, which offer an abstraction of the state
of the implementation object. They allow the separation of
the filter itself from the implementation details of the object.
Thereby the reusability of the filter is increased.

The successful application of predicates in the Composition
Filters approach suggests that predicates are indeed a de-
sirable concept for AOP languages. In Composition Filters,
filters are very specific entities, existing for the sole purpose
of filtering messages. Conditions serve the purpose of con-
trolling the flow of execution. By contrast, team and roles
in ObjectTeams/Java are regular classes producing regular
instances.

We could not find prior work concerning AOP where predi-
cates where used to control aspect instantiation as it is sup-
ported by base predicates in ObjectTeams/Java.

5.4 Context based programming

Teams define a context for all executions of role methods. It
is an advantage that this context is available already when
evaluating guards. When acting as a mediator between its
role objects, a team can be used to detect certain execution
patterns at the base level. Mediated by a team, a sequence of
callin triggers can be regarded as a situation, which includes
a memory of passed triggers as well as a place for storing
data that where collected along the path of execution. In
this setting, guards are used to filter events depending on the
current state of the team and on any data available at the
join points. Thus, Object Teams supports different levels
of designing program modes: Team activation defines which
team instances influence the system at a given point in time.
Guards allow an active team to focus on specific subsets of
emitted events. This could mean to consider certain base
objects only, it can exclude method calls based on their pa-
rameter values, or different role classes can be turned on and
off in different modes of a team.

Other approaches exist that allow to define behavior based
on some context information. Lasagne [15, 24] defines per-
client contexts for distributed applications. Also, context
relations [23] and environmental acquisition [7] share some
ideas with Object Teams. Caesar [17] and Chameleon [8]
are other programming models similar to Object Teams. Of
these approaches, only Lasagne supports a limited notion
of predicate dispatch. In Lasagne a deployment-specific in-
terceptor can be used for "global predicate dispatch”. On
the other extreme, methods may be guarded by a precon-
dition for so-called ”local predicate dispatch”. An in-depth
comparison of our approach with the details of the recently
published thesis [24] will certainly be very instructive, but

10Being a MOP-based approach, AspectS certainly has the
flexibility to support many different styles, but it can give
no static guarantees like team-level predicates, e.g., can.

from a first look it seems, that predicates in Lasagne cannot
be used to control aspect instantiation.

It is a contribution of our approach to provide guards at four
different levels of granularity and at different points in the
control flow (at the base vs. at the role). Also among the
presented approaches the additional dispatch mechanism of
Object Teams (lifting) is unique. By their close connection
to the lifting mechanism, guards can also be used to con-
trol role instantiation, which is not parallelled in the other
approaches.

6. CONCLUSION

We have introduced guard predicates as a clean way to con-
trol the activation and instantiation of aspects. The fea-
ture has been implemented in the OTDT, the eclipse based
Object Teams Development Tooling[21]. First experiments
support the predicted benefits.

We are convinced that explicit support for guard predicates
in aspect languages helps to untangle language concepts,
thus leading to more orthogonal language designs. In this
sense, the introduction of guards as a separate construct al-
lows to construct a leaner join point language. It was an
important step of AOP to extract many conditionals from
the imperative code, because cluttered conditionals may be-
come a real danger to comprehending a program over its
evolution. We take extracting conditionals one step further
by introducing guard predicates at a prominent level in the
language.

The number of approaches that use guards as one of their
core concepts illustrates the fundamental importance of
guards. With explicit language support for guards, AOP
can actually be explained as a specific kind of ECA system.
Join points define events that are emitted whenever the con-
trol flow passes a certain point. Guards define the conditions
by which events are filtered. Action in aspect languages ac-
tually means an adaptation of an existing action in the base
program further specified as either before, after or replace.

Of course, role guards (when) could always be encoded by
weaving the condition into all relevant role methods. We
see three main reasons for raising guards to the level of a
language feature:

1. Guards at the level of classes (role and team) avoid
the scattering that would occur in the hand-coded so-
lution.

2. Guards as a language feature encourage programmers
to think in terms of modes, conditions, situations etc.

3. Base-level guards allow to prevent the creation of role
objects that should not exist, an effect that can only
be obtained by a close connection to the runtime se-
mantics of callin binding and lifting.

After the introduction of guard predicates, ObjectTeams/
Java now provides these styles of controlling aspect instan-
tiation: First, teams are instantiated and activated explic-
itly, which gives programmatic control not only over which

aspects have an effect on the system, but also on their rel-
ative priority. Second, role creation can be triggered by
constructor calls from within the team or by declared lift-
ing in team-level methods. Third, role creation caused by
a callin binding can be rejected by a guard. So the default
behavior for roles is implicit creation on demand, but client
code may explicitly add roles and prevent other roles from
being created.

6.1 Future work

After academic experiments have identified many situations
where guard predicates indeed facilitate very modular de-
signs, an industrial case study using ObjectTeams/Java is
currently in progress.

The language design of ObjectTeams/Java is not complete,
yet. To date, the only way to specify join points is to enu-
merate methods by name. Therefor, a full analysis of orthog-
onality and expressiveness can not yet be done. However,
we consider explicit support for guards more fundamental
than the exact choice of a query language by which join
points can be identified. With guards separated from join
points we can now focus on which events actually should be
observable.

7. REFERENCES
[1] M. Aksit, M. Mezini, and R. Unland, editors. Objects,
Components, Architectures, Services, and Applications
for a Networked World, International Conference
NetObjectDays, NODe 2002, Erfurt, Germany,
October 7-10, 2002, Revised Papers, volume 2591 of
Lecture Notes in Computer Science. Springer, 2003.

[2] Lodewijk Bergmans and Mehmet Aksit. Principles
and design rationale of composition filters. In
R. Filman, T. Elrad, S. Clarke, and M. Aksit, editors,
Aspect-Oriented Software Development.
Addison-Wesley, 2004. ISBN 0-32-121976-.

[3] Craig Chambers. Predicate classes. In Proc. of
ECOOP’93, 1993.

[4] M. Cilia, M. Haupt, M. Mezini, and A. Buchmann.
The convergence of aop and active databases:
Towards reactive middleware. In Proceedings of 2nd
International Conference on Generative Programming
and Component Engineering (GPCE), volume 2830 of
LNCS, pages 169-188, 2003.

[5] K. R. Dittrich, S. Gatziu, and A. Geppert. The active
database management system manifesto: A rulebase
of a ADBMS features. In Proceedings of the 2nd
International Workshop on Rules in Database
Systems, volume 985, pages 3—20. Springer, 1995.

[6] Rémi Douence, Olivier Motelet, and Mario Stidholt. A
formal definition of crosscuts. Lecture Notes in
Computer Science, 2192:170-184, 2001.

[7] J. Gil and D. Lorenz. Environmental Acquistion — a
new inheritance like abstraction mechanism. In Proc.
of OOPSLA’96, pages 214-231. ACM, 1996.

[8] Kasper B. Graversen and Johannes Beyer. Chameleon,
August 2002. Masters thesis. IT-University of
Copenhagen.

[9] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
8(3):231-274, June 1987.

[10] Stephan Herrmann. Object Teams: Improving
modularity for crosscutting collaborations. In Aksit
et al. [1].

[11] Stephan Herrmann. Confinement and representation
encapsulation in object teams. Technical Report
2004/06, Technical University Berlin, 2004.

[12] Stephan Herrmann. Translation polymorphism in
Object Teams. Technical Report 2004/05, Technical
University Berlin, 2004.

[13] Robert Hirschfeld. AspectS - aspect-oriented
programming with squeak. In Aksit et al. [1].

[14] Christine Hundt. Introducing Dynamic AOP to
Object Teams. Poster at European Interactive
Workshop on Aspects in Software EIWAS’04,
http://wuw.topprax.de/EIWAS04, 2004.

[15] B. Jgrgensen and E Truyen. Evolution of collective
object behavior in presence of simultaneous
client-specific view. In Proceedings of the 9th
international Conference on Object-Oriented
Information OOIS’03, volume 2817 of LNC'S, pages
18-32. Springer Verlag, 2003.

[16] G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and
J. Palm. An overview of AspectJ. In Proc. of 15th
ECOOP, number 2072 in LNCS, pages 327-353.
Springer—Verlag, 2001.

[17] M. Mezini and K. Ostermann. Conquering aspects
with caesar. In Proc. AOSD’03, Boston, USA, March
2003. ACM Press.

[18] Mira Mezini. Variational Object-Oriented
Programming Beyond Classes and Inheritance. Kluwer
Academic Publisher, 1998.

[19] T. Millstein. Practical predicate dispatch. In
Proceedings of OOPSLA 2004, October 2004.

[20] Object Teams home page.
http://www.Object Teams.org.

[21] Object Teams Development Tooling download page.
http://www.Object Teams.org/distrib/otdt.html.

[22] Doug Orleans. Separating behavioral concerns with
predicate dispatch, or, if statement considered
harmful. In Workshop Advanced Separation of
Concerns in Object-oriented Systems at OOPSLA 01,
2001.

[23] L. Seiter, J. Palsberg, and K. Lieberherr. Evolution of
Object Behavior using Context Relations. IEEE
Transactions on Software Engineering, 24(1):79-92,
January 1998.

[24] Eddy Truyen. Dynamic and context-sensitive
composition in distributed systems. PhD thesis,
Katholieke Universiteit Leuven, October 2004.

