
Applying Aspect-Orientation Techniques in

Automotive Software Product-Line Engineering

Katharina Mehner
Technische Universität Berlin

Fachgebiet Softwaretechnik

Sekretariat FR5-6

Franklinstraße 28/29

10587 Berlin, Germany

mehner@cs.tu-berlin.de

Mark-Oliver Reiser
Technische Universität Berlin

Fachgebiet Softwaretechnik

Sekretariat FR5-6

Franklinstraße 28/29

10587 Berlin, Germany

moreiser@cs.tu-berlin.de

Matthias Weber
DaimlerChrysler AG

Research & Technology

Alt-Moabit 96a

10559 Berlin, Germany

Matthias.N.Weber@

DaimlerChrysler.com

Abstract

The application of product-line engineering

concepts to automotive software development has

received increasing attention during the last few years.

A core facet of software product-line approaches is the

definition and management of variability within

various development artifacts. Aspect-orientation

techniques provide an interesting alternative to the

traditional way of defining variability with variation

points and variants.

In this paper we (1) show where and how aspect-

orientation can be embedded in an automotive

product-line approach, (2) compare the traditional

technique for variability definition with the aspect-

oriented one and finally (3) discuss the benefits as well

as possible shortcomings of applying aspect-

orientation for automotive software product-lines.

1. Introduction

One of the challenges in today’s automotive

development is the high degree of variability of the

developed systems. Manufacturers sell their products in

many countries with diverse customer expectations,

local legislation, etc. Moreover, being able to offer a

broad range of products appealing to very different

target groups became, over the last years, an important

prerequisite to a competitive position on the global

markets. On the other hand, suppliers sell their

products to different manufacturers, thus having to

tailor their products to the needs of each customer.

A promising approach to handle this complex

situation is product-line engineering (cf. [PBL05]),

which became quite popular during the last few years.

At the heart of a product-line framework is the

definition of the variability in each development

artifact (e.g. requirements databases, design models,

test cases). Traditionally this is achieved by specifying

variation points in the variable artifacts together with

several variants for each variation point. Unfortunately

this approach has severe weaknesses. For example,

often a single source of variation affects development

artifacts at many different locations, spreading its

definition across many variation points all over the

artifact. In addition, keeping apart different sources of

variation – i.e. different optional features of the system

– is impossible when they affect a same variation point

within an artifact, leading to highly intertwined

variation definitions. This results in extremely complex

definitions for variable artifacts which are error prone

and difficult to maintain and evolve.

Aspect-oriented techniques are an interesting

alternative to this traditional style of defining

variability and may help overcome its specific

problems. Below, we will describe what role aspect-

orientation may play within the context of an

automotive software product-line, compare it with the

traditional approach and discuss benefits and possible

problems of this new paradigm with respect to

automotive development.

The remainder of this paper is structured as follows:

In the next section, we first give an overview of

product-line oriented automotive software engineering

as the methodological context of this discussion. The

basic idea of aspect-orientation is described in Section

3. In the subsequent two sections we explain the

traditional (Section 4) and the aspect-oriented way

(Section 5) of defining variability in software artifacts.

These two approaches and their impact on and value

for automotive development are then compared to each

other in Section 6. The text concludes with a discussion

of related work and ideas for further research.

2. Software product-lines

In this section we give an overview of product-line

oriented software development and show at what point

within this context aspect-orientation techniques may

be applied. This will also lead to several requirements

on the concepts introduced in Section 5.

The basic idea of product-line oriented software

development is that instead of developing several

similar but still significantly distinct software products

independently from each other, only a single, but

variable product is developed and – in a second step –

the individual products needed are derived from the

variable product by configuration. The variable product

is often referred to as the product-line infrastructure

whereas the individual products are called product

instances. For example, the climate control system for

Mercedes-Benz A-Class, C-Class and S-Class could be

developed independently from another, i.e. each phase

of software development – such as requirements

analysis, design, implementation, integration and test –

is performed for each type of climate system

separately. In contrast, following a product-line

oriented approach, only one variable climate control

system would be developed which would then be

configured to meet the needs for A-Class, C-Class and

so on.

It is important to note that ‘configuration’ is used in

a very broad sense here:

● It could mean that the binary code of the climate

control actually running on a shipped vehicle is the

same for A-Class, C-Class and S-Class vehicles and

that this identical code is only configured through

parameters in flash memory.

● It could as well mean that already the behavioral

description (e.g. a Statemate diagram) is configured

and that code generation is performed on such a

configured model, thus leading to shipped code that

is different for the various vehicle types, only

containing the functionality needed in the vehicle it

is deployed in.

These are only two of a multitude of possible ways

of resolving variability. In a complex system, usually

more than one of these are applied simultaneously.

In summary, using a product-line approach means

that all artifacts of the software development process

may be variable. For example, a requirements

document for the climate control may contain

requirements that are only needed for S-Class or that

change in meaning depending on the targeted type of

vehicle. The same applies to design models (e.g.

component diagrams), behavioral descriptions, test

cases etc. This is illustrated in the lower half of Figure

1. The empty rectangle in the enlarged artifact on the

right side indicates a variation point, i.e. a point where

the content of the artifact is variable. The three

rectangles further to the right denote variants, i.e.

different content that may be included in the artifact at

the variation point.

When taking into account all variable artifacts, this

leads to a multitude of variation points, variants and

possible configurations, creating an enormous

complexity. To manage this, many product-line

approaches use feature models. In this context, a

feature is a characteristic or a trait a specific product

instance of the product-line may or may not have. For

example, a feature of the climate control may be “Low

Energy Consumption” for vehicle types with a limited

on-board power supply or for markets with harsh

requirements on fuel consumption. A feature model

lists all these features together with dependencies

between them.

In contrast to requirements, features are not

intended to list all characteristics of a given product

instance but only those that are needed to tell apart the

product instances from one another. However, features

and requirements share many similarities and features

may well be seen as coarse-grained requirements.

There is no received opinion in product-line

literature of precisely how to apply feature models in

the development process. We propose to have a central,

global feature model for all development artifacts (see

upper half of Figure 1), used by different departments –

development, production, sales, marketing,

management – and that serves (1) as a common basis

for configuring all artifacts, (2) as a means to organize

and maintain the variability of all artifacts and (3) as a

set of coarse-grained requirements.

In order to use the central feature model as a basis

for configuration, the engineer has to define for each

variant when it will be selected in terms of selection

and deselection of the features in the central feature

model (variant selection definition). Then, a

configuration of the central feature model – i.e. a

selection or deselection of its features – can be used to

configure the development artifacts.

Basic
Advanced

Speed-Ctrld
Rain-Ctrld

LowEnergy
Consumption

Wiper

Central Feature Model

Development Artifacts

variant selection

definition

Variable Artifact

Fig. 1. Product-line oriented development.

The various product-line approaches proposed by

the scientific community differ quite substantially with

respect to details. For example, an important detail is

how to precisely define the variability of an artifact, i.e.

how to define the existing variation points, the variants

for each variation point and their selection definition.

The answer to this question of artifact variability

definition is highly dependant on the type of artifact

you are looking at: A variation point in a requirements

document has to be described in a different fashion

than one in a component diagram or a state diagram.

And since the engineer defining and maintaining the

artifacts is closely working with this concept and since

the complexity can be very high (large number of

variation points, etc.), the usability and scalability of

this concept is of utmost importance.

At this point aspect-orientation comes in. In the

remainder of this paper we will examine how aspect-

orientation could be applied as a valuable technique for

artifact variability definition to overcome the

shortcomings of the traditional approach as described

in Section 1.

3. Aspect-orientation

Let us now introduce the basic idea of aspect-

orientation before, in later sections, looking in more

detail at the definition of artifact variability both in a

traditional and an aspect-oriented way.

Aspect-orientation (AO) aims at improving the

modularization for crosscutting concerns, i.e., for

concerns that are found in many modules of a given

modularization and hence are not well localized.

Aspect-orientation provides a novel module concept

called aspect for encapsulating the structure and

behavior of a crosscutting concern and a novel

composition paradigm that composes aspect behavior

with existing modularization through method call

interception.

The idea of aspect-orientation was first applied to

programming languages as aspect-oriented

programming (AOP). Therefore it is useful to start with

examining an example in this area. Consider the

following code snippet:

class Client {

 private String name;

 private int age;

 ...

 void setName(String newName) {

 name=newName;

 }

 String getName() {

 return name;

 }

 void setAge(int newAge) {

 age=newAge;

 }

 int getAge() {

 return age;

 }

}

Now, if we needed to add some functionality – e.g.

error handling or logging for debug purposes – to all

methods of class Client that are setting values within

this class, we would have to add appropriate code in

methods setName() and setAge(). The drawback of this

would be, for example, that when adding a new

attribute together with a new setter-method, we would

have to remember to add this functionality also to this

new method. Furthermore, the code needed to be added

to the various methods will be very similar or even

identical in many cases, leading to redundant code with

its typical shortcomings.

The solution that aspect-oriented programming has

to offer here is the definition of an aspect. An example

of such an aspect, specified informally in natural

language, might be:

Whenever

 a method of class Client with a name matching

 the pattern “set*” is called
execute the following code:

 System.out.println(“DEBUG-INFO: „+

 „Client attribute changed!“);

This simple example already shows the main

constituents of an aspect: A definition where some

additional functionality is to be executed in the running

program – called a point-cut in AO terminology – and

a definition of what functionality is to be inserted –

called an advice. The process of inserting advices into

a running program is usually referred to as aspect

weaving. Aspect-oriented programming languages,

such as AspectJ [Mil04] or ObjectTeams [Her02],

provide means to formally specify the point-cut and the

advice. Note that the definition of a formal language to

express point-cuts also implicitly defines at what points

of a program advices may theoretically be woven in.

The set of these theoretically possible targets of aspect

weaving are called the join-points of a program or,

speaking on a more general level, of a programming

language.

Today’s aspect-oriented programming languages

provide a tremendous degree of flexibility in defining

point-cuts and advices. For example, it is possible

within an advice to reflect on the context in which it is

actually woven in. In the simple aspect shown above,

this would allow us to output the name of the changed

attribute together with its old and new value. In the

point-cut, on the other hand, many more characteristics

of the target code than only method names can be

referred to in order to define where the aspect is woven

in. For example, only methods with a certain return

type may be chosen or only methods with a first

parameter of type Integer. In addition to these static

characteristics, dynamic aspects allow to also refer to

dynamic properties of the running code, in order to

define whether or not an advice is woven in. The

question of “where” weaving takes place is altered to

“where and when” weaving takes place. With this

facility, we could formulate an aspect, that prints an

error message whenever a Sting-attribute is about to be

set to ‘null’:

Whenever

 a method of class Client with a name matching

 the pattern “set*” and a single parameter of

 type String is called, (static characteristics so far)

 AND this first parameter is ‘null’ (dynamic)
execute the following code:

 System.out.println(“ERROR: “+

 “Attribute “+attribName+

 “ set to null !“);

There are many more possibilities with respect to

aspects: for example, advices can also be executed after

a method finishes or advices can change the values of

parameters or return values. Further details of these

point-cut and join-point definitions are beyond the

scope of this overview. Instead, for our discussion, it is

more important to concentrate on the basic idea behind

aspect-orientation. This can be summarized as follows:

1. an aspect consists of a point-cut and an advice

2. the point-cut specifies where (or where and when)

the advice will be executed

3. the advice specifies what is executed (program code

in our example)

4. the formalism used to define point-cuts implicitly

defines a set of possible points of insertion, called

join-points

At this point it is important to note that the basic

artifact which is changed by weaving in aspects does

not need to be changed in any way, i.e. there is no need

to explicitly mark the join-points in the code. Instead

they are implicitly defined as above. We will further

discuss this property of the aspect-oriented approach

below.

The kind of point-cuts we have introduced with our

examples support dynamic crosscutting [BCC05],

because the point-cuts match points in the execution of

a program and thus will have an effect on the runtime

Washer
Pump

Wiper
Washer
Control

WipeMode

Wipe

Wiper
Switch

WipeMode

Wipe

RainIntensity

Wiper
Motor

Rain
Sensor

RainIntensity

RainRain

WipeWipe

WipeStopWipeStop

WaterOnWaterOn

Water
Sensor

WaterLevel WaterLevel

WaterSupply WaterSupply

WipeSpeedWipeSpeed

WaterOffWaterOff

Fig. 2. WiperWasher Component Diagram.

behavior. There exists also static crosscutting which

supports the manipulation of the structure of a

program, e.g., introducing members to classes.

4. Traditional variability definition

In this section we will first examine how artifact

variability is traditionally defined with variation points

and variants before we explore the potential of using

aspect-orientation for this purpose in Section 5.

We illustrate variability by means of a wiper control

example using a hierarchical component notation called

EAST-ADL, a modeling language specifically targeted

at the automotive domain
1
. The example describes the

high-level software components required to realize the

control of a wiper and washer system. The wiper switch

is used to trigger the system. The two sensors provide

additional information. From all these inputs, signals

are generated that control the actual wiper motor and

washer pump (see Figure 2).

Components are connected through their in-ports

and out-ports, which are denoted by special graphical

icons with a triangle pointing inward or outward. Here

we cannot give more details on the communication

semantics between components. A component can be

refined by a set of other components which is omitted

for reasons of simplicity.

Each component can be a variation point. This

means that such a component is merely a place holder

but has no specification on its own. Such a component

Rain Sensor

Simple Rain
Sensor

Rain Intensity
Sensor

Water Sensor

Simple Water
Sensor

Water Level
Sensor

WiperWasher
Control

Simple Control
Advanced

Rain Control
Advanced

Water Control
Rain & Water

Control

Fig. 3. WiperWasher Component Variability and

Dependencies.

1 The details of this notation are beyond the scope of this paper, but

the concepts we use here are very similar to UML2 component

diagrams.

is depicted with a dashed outline. The variants for a

variation point are specified in a separate diagram (see

Figure 3). A variant can specify all the ports of the

variation point but does not have to.

In the example, the two sensors’ components and

the control component are variation points. For each

sensor, a simple and an advanced version exist. The

simple rain sensor signals only that it is raining, while

the advanced sensor also signals the intensity. The

simple water sensor signals whether water for washing

is available or not while the advanced sensor also

signals the water level. The level can be used for

implementing a water-saving mode when the water

container is almost empty. Depending on the chosen

sensors different controls have to be used. There is one

control for each combination of sensors. Dependencies

between variants are depicted as a mutual dependence

relationship using dashed arrows.

As already mentioned, the selection of appropriate

sets of variants is controlled through feature modeling.

For each variant, it can thus be defined on which

features it depends.

In the remainder of this section, we will discuss the

potential for improvement in the notation used for

variability. The notation can be evaluated under the

perspective of understandability and flexibility.

1. The variants are grouped according to which

component they replace. It is often the case that

dependencies arise between variants. This

additional dimension cannot be captured and is

therefore difficult to understand. The information

belonging to one configuration is scattered over the

individual variant definitions. Especially, if there

are many dependencies, the workaround of

annotating them in the variant diagram does not

scale. Conversely, in the variant notation, different

variations become tangled with each other. The

problem causing this situation is also known as the

tyranny of the dominant decomposition, which is

here the component definition. According to the

component definition language, the variant

definition language has been defined such that a

single component is a variation point and a single

component is a variant.

2. The notation requires specifying the variation

points precisely, and thereby, determining at what

level of abstraction they are introduced. If,

however, a more fine grained variation point deeper

in the hierarchical refinement of a component

would be sufficient, nevertheless, the entire context

as specified through the variation point has to be

included. If, on the other hand, a more coarse

grained variation point would be needed, instead,

several variation points have to be used to achieve

the variation in a larger context. Both workarounds

hamper especially adaptation and evolution of

specifications and the underlying systems.

5. Variability definition with aspects

In this section, we propose an alternative for

modeling variability which follows the ideas of aspect-

orientation. While aspect-orientation primarily aims at

improving modularization for a concrete model, it is

also conceivable for using it for the additional

dimension of variability. Here, it should try to

overcome the problems pointed out at the end of the

last section.

We aim at replacing the notion of variation points

and also the notion of a variant diagram by means of

aspects.

1. The notion of a point-cut lends itself naturally as a

description of a variation point. Not only individual

components can be referred to in a point-cut but

also a set of components.

2. The part corresponding to an advice will specify the

variants which can be a single component but also a

set of components. Moreover, the advice will

capture all variants that are dependent on each other

and belong to a configuration.

As we aim at not determining before hand, where

the variation points are, there is one important

implication. Now, all the components in the normal

diagrams must have a specification, i.e. there are no

more place holders. Thus, a component diagram

specifies a default, basic configuration (see Figure 4).

The new concepts are illustrated with our running

example. Instead of the diagram with place holders we

now have a base diagram showing a configuration

using two simple sensor components and a simple

control component. There are three additional

configurations. Two of them exchange one of the

sensors, and one configuration replaces both sensors by

advanced sensors. Each configuration also exchanges

the control component.

This is modeled as follows. The point-cut of an

aspect consists of a graphical representation of the

component that should be replaced. This is depicted in

the upper half of a grey box, separated by an arrow

from the lower half which depicts the new

configuration (see Figure 5).

While in the traditional variability model, the place

holder already contained the maximum number of

ports, in this model the default configuration only

depicts the ports needed in this configuration. A new

configuration can add additional ports when needed.

The idea of completely replacing components for

other variants is a reminiscent of the traditional

variation-point / variant approach. This might even

include the deletion of a component in order to

simulate the null variant option. Using aspect-oriented

techniques, it is, however, also conceivable that a

component is re-used in a variant configuration.

In the example, instead of replacing the simple

control when an advanced sensor is used, the simple

control could be adapted by another component by pre-

or post-processing its inputs / outputs. This is an

alternative to the aspects of Figure 5. It is exemplarily

described for the advanced rain sensor in Figure 6.

Here, we have shown explicitly all ports, to which the

adaptor control can connect in order to adapt the

existing control. In the examples, there are components

that are matched by the point-cut but that are not

changed by the aspect. Here, they have to be repeated

in the advice. This redundancy could be avoided by

designing a more appropriate language for defining

point-cuts and aspects.

Washer
Pump

Wiper
MotorSimple

Wiper
Washer
Control

WipeMode

WipeWiper
Switch WipeMode

Wipe

Simple
Rain

Sensor

RainRain

WipeWipe

WipeStopWipeStop

WaterOnWaterOn

Simple
Water
Sensor

WaterSupply WaterSupply

WipeSpeedWipeSpeed

WaterOffWaterOff

Fig. 4. WiperWasher Component Diagram for Default.

As mentioned before, the selection of an aspect in

our approach is additionally triggered by the selection

of features from the feature models. This is not shown

in the example but it should be pointed out that this is

not present in standard aspect-orientation, where the

aspect is applied when the point-cut finds a match.

Also, here we have not yet introduced point-cuts

which specify properties of components they are

intended to match but only concrete components. It is

however conceivable to work with matching as this

ideally captures problems that are crosscutting. Point-

cuts could refer to characteristic patterns in the internal

structure of a component or in the context of a

component and hence match more than one component.

Crosscutting can be found e.g. in redundancy or

plausibility analysis of system control.

Note that here, we have only considered

components as join-points. It is also conceivable to use

ports and port-connections as join-points. This is a

topic of future research.

6. Comparison

Now, we will compare the two approaches for

defining the variability of a product-line’s artifacts,

namely the traditional variation-point/variant approach

outlined in Section 4 and the alternative approach using

aspect-orientation presented in Section 5. We will first

look at similarities and differences on a technical level

and then, in a second step, examine the implications of

these differences for automotive software development

from a methodological point of view.

6.1. Technical differences
The most important difference between the two

forms of variability specification is related to the

question where variability occurs within an artifact:

Traditionally this is specified by adding some kind of

variation point element in the variable artifact’s

description (as shown in Section 4 for component

diagrams). In contrast, the AO approach does not alter

the base diagram. Instead, the point where a variation

occurs is defined only externally in the point-cut of an

aspect (again, shown for component diagrams in

Section 5). So, on the one hand, variation points are

specified explicitly by way of dedicated elements, on

the other hand, variation points are specified only

implicitly, offering the possibility of an unaltered base

model.

Advanced
Rain & Water

Control

RainIntensity
Rain Intensity

Sensor
RainIntensity

RainRain

Water Level
Sensor

WaterLevel WaterLevel

WaterSupply WaterSupply

Simple
WiperWasher

Control

Simple Rain
Sensor

RainRain

Simple Water
Sensor

WaterSupply WaterSupply

Advanced
Rain ControlRainIntensity

Rain Intensity
Sensor

RainIntensity

RainRain

Simple
WiperWasher

Control

Simple Rain
Sensor

RainRain

Advanced
Water ControlWaterLevel

Water Level
Sensor

WaterLevel

WaterSupplyWaterSupply

Simple
WiperWasher

Control

Simple Water
Sensor

WaterSupplyWaterSupply

Fig. 5. WiperWasher Aspect Diagram.

Another important technical difference is the

relation between the points where variation occurs and

the definition of the actual variation. The traditional

approach of using variation points and variants defines

the variation for each variation point separately. In

other terms, each variant is related to exactly one

variation point. This tight coupling of variation

definition and the points where the variation is about to

take place is detrimental when one and the same

variation should occur at many different points

“scattered” all over a complex model. For example, let

us assume that for a complex diagram of an entire body

electronics system (with control for wiper, headlights,

blinker, windows, climate, etc.) we want to add

optional diagnostics functionality to all sensors that

allows the logging of the sensors’ data over some

diagnostics interface. Even if the functionality is

identical for each sensor, we would need to specify a

variation point together with appropriate, dedicated

variants for each sensor. Aspects, on the other hand,

would allow us to define the added functionality once

(in form an advice) an insert this at each sensor by

formulating a point-cut that selects all sensors in much

the same way as we added logging functionality to

several java methods in Section 3. In AO terminology:

The aspect allows us to weave in the cross-cutting

concern “diagnostic functionality” without scattering

information all over a complex model.

Finally, the approaches differ technically with

respect to the coupling of different “reasons” for

adding variability. Let us assume, in the above

example, we not only want to add to each sensor a

single optional diagnostic functionality (making the

sensors’ values accessible from an external interface)

but also a second function (e.g. logging of the sensors’

values for internal error handling purposes). If each of

these functions is optional and they can also be

combined, we would need to define for each variation

point 4 variants: none of the two, 1
st
 functionality, 2

nd

functionality and the combination of both. In general,

whenever n optional and combinable alterations occur

at a single point of the model, 2 to the power of n

variants need to be specified. This combinatory

explosion can be avoided with aspects, because with

aspects each of the above functions can be defined

separately and they can be combined. So, instead of 4

variants, only two optional aspects would need to be

defined: one for the external accessibility of sensor

values and one for the internal logging. It is important

to mention that this is not true in all circumstances.

There are cases where a combinatory explosion can be

avoided with the variation point / variant concept (i.e.

when it is possible to define one variation point which

optionally implements the 1
st
 functionality and a

second, separate variation point that optionally

implements the 2
nd

 functionality) and, on the other

hand, there are cases in which aspects cannot be

defined truly orthogonally (discussed below in Section

6.2). But in general, it is true that the definition of

aspects is more orthogonal in the sense that it aims at

clearly keeping apart different concerns.

In summary, we have identified these technical

differences of the AO approach with respect to the

traditional one:

1. unaltered base model

2. no “scattering” of cross-cutting concerns

3. orthogonal definition of optional functionality

6.2. Methodological Implications
After having identified the technical differences of

the approaches, we can now turn to a discussion of the

implications for automotive software development and

the general potential and possible problems of applying

aspect-orientation in the automotive context.

Simple
WiperWasher
Control

Advanced
Rain Control

Adaptor

Rain Intensity
Sensor RainIntensity

RainRain

Simple
WiperWasher

Control

Simple Rain
Sensor

RainRain

Wipe

WipeStop

WaterOn

WipeSpeed

WaterOff

Wipe

WipeStop

WaterOn

WipeSpeed

WaterOff

Wipe

WipeStop

WaterOn

WipeSpeed

WaterOff

WipeMode

Wipe

WiperSwitch WipeMode

Wipe

SimpleWater
Sensor

WaterSupply WaterSupply

WipeMode

Wipe

WiperSwitch WipeMode

Wipe

SimpleWater
Sensor

WaterSupply WaterSupply

RainIntensity

Rain

WipeMode

Wipe

WaterSupply

Fig. 6. Wrapper Aspect.

Let us start with a relatively simple but nevertheless

significant benefit of AO. Since this approach leaves

the basic model unchanged, i.e. no explicit variation

points need to be specified in the basic model, it can be

quite easily realized with legacy tools that do not

provide support for variability. This is an important

factor for the automotive domain, where a wide range

of tools are being applied and shifting to other tools is

extremely difficult or impossible for methodological,

financial and organizational reasons. Similarly, this

property of AO also facilitates the use of legacy

models, which is also of great significance in the

automotive context.

Furthermore, the clear separation of a base model

defining the standard functionality and the separate

definition of changes to that basis (through aspects)

makes the models – both the base model as well as the

definition of alterations – a lot more readable and

maintainable. This is especially true for domains where

the basic functionality is the most complex part while

there exist a very large number of relatively simple

variations from that basis. In the automotive domain

this is the case, especially for body electronics. Also,

the very long evolution of the same models, as is the

case in the automotive domain, is very well supported

with AO, because when a certain alteration (aspect) is

added or is no longer used, this does not alter the

definition of the other alterations (aspects).

Another benefit of AO is related to dependencies

between variants, which is, as stated above, a

significant challenge in automotive development. Since

AO allows to aptly modularize cross-cutting concerns,

such dependencies will be manageable in a more

straightforward manner.

Finally, and most importantly, AO may prove as a

very good tool to support an organizational model

which is becoming increasingly important in the

automotive domain: cross-line development, i.e.

development of sub-systems for more than one vehicle

line. With AO, the basic model of a sub-system could

be developed for several vehicle lines and each vehicle

line could introduce its local changes through aspects.

The important point here is that the aspects introduced

by one vehicle line do not affect those of another.

The same is true not only for separate vehicle lines

but also for separate teams working on different aspects

(variants) of the same vehicle line. Thanks to the

orthogonal definition of aspects they can work

relatively independently of one another.

However, some important reservations have to be

made at this point. We stated above that aspects can be

defined orthogonally, i.e. one aspect (both advice and

point-cut) can be defined independently of another and

afterwards, both can be combined by weaving both

aspects into the same base model. But this is only

entirely true for simple cases, such as our diagnostics

example from Section 6.1: The internal logging of

sensor values is by nature independent of providing

these values at some external interface. But what if an

optional aspect’s functionality has an effect on the base

model’s behavior? Then other aspects’ precise

behavior may depend on whether this aspect is actually

woven in or not. This is an important concern for

further research on applying AO in the automotive

domain. In particular, it has to be identified what forms

of interdependencies may occur between aspects and

how teams working on the aspects separately can be

coordinated.

Similarly, all benefits of AO for the automotive

domain identified here depend on a clear, readable and

maintainable concept for aspect definition. This is, of

course, heavily dependant on the type of artifact for

which variability is to be defined.

While the use of model-based specification is

growing in the automotive domain, there are

traditionally still many artifacts, for example

requirements or test specifications, which are largely

textual and do not have a very sophisticated internal

structure. It is an interesting topic of future research to

investigate the applicability of the concept of point-cuts

and join-points for these artifacts.

7. Related Work

Up to now, the main focus has been on using aspect-

oriented techniques on programming language level for

implementing variability in product-lines. The

approach by Spinzyk et al. starts from feature models

and uses an aspect-oriented extension of C++ to

implement a product-line [LSS05].

In a similar way, Mezini et al. have examined the

appropriateness of aspect-oriented programming

languages and of mixin-style programming languages

[MO04] for implementing variability of crosscutting

concerns. Loughran et al. have proposed a generative

approach called framed aspects to instantiate aspects to

a specific context for implementing variability and to

improve evolution of software product lines [LRZ04],

[LR04].

The approach sketched in this paper goes beyond

the implementation level by incorporating aspects

already as a technique for modeling variability. In

addition, it envisions embedding aspect techniques in

large-scale product-lines spanning many artifacts of

different type. Using aspects this way was also

proposed by Greenfield et al. in [GS05] but without

discussing the special characteristics of the automotive

domain.

8. Summary and future work

In this paper we have given a brief overview of

software product-lines and aspect-orientation and

showed where and how aspect-orientation may be

utilized within product-line oriented automotive

software development. Then, a comparison of

traditional and aspect-oriented definition of artifact

variability was given, followed by a discussion of the

potential of the latter for the automotive domain. While

doing so, two issues where identified to be the most

important target for future research, namely the precise

technique for defining aspects in automotive

development artifacts (esp. component diagrams) and

the interdependence of aspect definitions together with

the possibility of combining several aspects. Since the

exemplary aspect specification diagrams in Section 5

de facto describe model transformations, existing

techniques and tools for model transformation will

prove a useful aid in this research.

Overall, we feel that aspect-orientation may become

a valuable instrument to meet some of the challenges

specifically encountered in automotive software

development. Nevertheless, substantial research in the

above mentioned direction still is necessary before this

relatively new paradigm can be applied on a broad

scale in this domain.

9. References

[BCC05] Berg, K.v.d., Conejero, J.M., Chitchyan,

R.: “AOSD Ontology 1.0 – Public Ontology of Aspect-

Orientation”. Technical Report AOSD-Europe

Deliverable D9, AOSDEurope-UT-01, Universiteit

Twente, 2005.

[GS05] Greenfield, J., Short, K.: “Software

Factories”. Wiley, 2005.

[Her02] Herrmann, S.: “Object Teams: Improving

Modularity for Crosscutting Collaborations”. Proc. of

Net.ObjectDays, Erfurt, 2002.

[LRZ04] Loughran, N., Rashid, A., Zhang, W.,

Jarzabek, S.: “Supporting Product Line Evolution with

Framed Aspects”. 3rd AOSD Workshop on Aspects,

Components, and Patterns for Infrastructure Software

(ACP4IS 2004), AOSD’04, 2004.

[LR04] Loughran, N., Rashid, A.: “Framed Aspects:

Supporting Variability and Configurability for AOP”,

International Conference on Software Reuse (ICSR-8),

Madrid, Spain, 2004.

[LSS05] Lohmann, D., Spinczyk, O., Schröder-

Preikschat, W.: “On the Configuration of Non-

Functional Properties in Operating System Product

Lines”. Proceedings of the 4th AOSD Workshop on

Aspects, Components, and Patterns for Infrastructure

Software (ACP4IS 2005), Chicago, IL, USA.

[Mil04] Miles, R.: “AspectJ Cookbook”, O’Reilly

2004.

[MO04] Mezini, M, Ostermann, K: “Variability

Management with Feature-Oriented Programming and

Aspects”, in: Foundations of Software Engineering

(FSE-12), ACM SIGSOFT, 2004.

[PBL05] Pohl, K., Böckle, G., van der Linden, F.:

“Software Product-Line Engineering”. Springer,

Heidelberg, 2005.

